

SECLAMAN INEQUALITY
ROMANIAN MATHEMATICAL MAGAZINE
2018

MARIN CHIRCIU

1) In ΔABC :

$$\frac{m_a^2 + m_b^2 + m_c^2}{r_a + r_b + r_c} \leq 2R - r$$

Proposed by Dan Seclaman - Romania

Proof.

We prove the following lemma:

Lemma.

2) In ΔABC :

$$\frac{m_a^2 + m_b^2 + m_c^2}{r_a + r_b + r_c} = \frac{3(s^2 - r^2 - 4Rr)}{2(4Rr + r)}$$

Proof.

Using $\sum m_a^2 = \frac{3}{4} \sum a^2$, $\sum a^2 = 2(s^2 - r^2 - 4Rr)$, $\sum r_a = 4R + r$.

□

Let's get back to the main problem.

Using the **Lemma** we write the inequality:

$$\frac{3(s^2 - r^2 - 4Rr)}{2(4Rr + r)} \leq 2R - r \Leftrightarrow 3s^2 \leq (4R + r)^2$$

which follows from Gerretsen's inequality: $s^2 \leq 4R^2 + 4Rr + 3r^2$.

It remains to prove that:

$$3(4R^2 + 4Rr + 3r^2) \leq (4R + r)^2 \Leftrightarrow R^2 - Rr - 2r^2 \geq 0 \Leftrightarrow (R - 2r)(2R + r) \geq 0,$$

obviously from Euler's inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

□

Remark.

Let's emphasises an inequality having an opposite sense.

3) In ΔABC :

$$\frac{m_a^2 + m_b^2 + m_c^2}{r_a + r_b + r_c} \geq 3r.$$

Proof.

Using the **Lemma** the inequality can be written:

$$\frac{3(s^2 - r^2 - 4Rr)}{2(4R + r)} \geq 3r \Leftrightarrow s^2 \geq 12Rr + 3r^2,$$

which follows from Gerretsen's inequality: $s^2 \geq 16Rr - 5r^2$.

It remains to prove that:

$$16Rr - 5r^2 \geq 12Rr + 3r^2 \Leftrightarrow R \geq 2r \text{ (Euler's inequality).}$$

Equality holds if and only if the triangle is equilateral.

□

Remark.

We can write the double inequality:

4) In ΔABC :

$$3r \leq \frac{m_a^2 + m_b^2 + m_c^2}{r_a + r_b + r_c} \leq 2R - r.$$

Proof.

See inequalities 1) and 3).

Equality holds if and only if the triangle is equilateral.

□

Remark.

Replacing the sum $r_a + r_b + r_c$ with $h_a + h_b + h_c$ we propose:

5) In ΔABC :

$$\frac{3R}{2} \leq \frac{m_a^2 + m_b^2 + m_c^2}{h_a + h_b + h_c} \leq \frac{3R^2}{4r}$$

Proposed by Marin Chirciu - Romania

Proof.

We prove the following lemma:

Lemma.

6) In ΔABC

$$\frac{m_a^2 + m_b^2 + m_c^2}{h_a + h_b + h_c} = 3R \cdot \frac{s^2 - r^2 - 4Rr}{s^2 + r^2 + 4Rr}$$

Proof.

$$\text{Using } \sum m_a^2 = \frac{3}{4} \sum a^2, \sum a^2 = 2(s^2 - r^2 - 4Rr), \sum h_a = \frac{s^2 + r^2 + 4Rr}{2R}$$

□

Let's get back to the main problem:

The left side inequality:

Using the **Lemma** the inequality from the left side can be written:

$$3R \cdot \frac{s^2 - r^2 - 4Rr}{s^2 + r^2 + 4Rr} \geq \frac{3R}{2} \Leftrightarrow s^2 \geq 12Rr + 3r^2$$

which follows from Gerretsen's inequality: $s^2 \geq 16Rr - 5r^2$.

It remains to prove that:

$$16Rr - 5r^2 \geq 12Rr + 3r^2 \Leftrightarrow R \geq 2r \text{ (Euler's inequality)}$$

Equality holds if and only if the triangle is equilateral.

The inequality from the right:

$$3R \cdot \frac{s^2 - r^2 - 4Rr}{s^2 + r^2 + 4Rr} \leq \frac{3R^2}{4r} \Leftrightarrow s^2(R - 4r) + r(4R^2 + 17Rr + 4r^2) \geq 0$$

We distinguish the following cases:

Case 1) If $(R - 4r) \geq 0$, the inequality is obviously.

Case 2) If $(R - 4r) < 0$, the inequality can be rewritten:

$$r(4R^2 + 17Rr + 4r^2) \geq s^2(4r - R)$$

which follows from Gerretsen's inequality: $s^2 \leq 4R^2 + 4Rr + 3r^2$.

It remains to prove that:

$$r(4R^2 + 17Rr + 4r^2) \geq (4R^2 + 4Rr + 3r^2)(4r - R) \Leftrightarrow R^3 - 2R^2r + Rr^2 - 2r^3 \geq 0$$

$$\Leftrightarrow (R - 2r)(R^2 + r^2) \geq 0, \text{ obviously from Euler's inequality } R \geq 2r.$$

Equality holds if and only if the triangle is equilateral.

□

Remark.

Between the sums $\frac{m_a^2 + m_b^2 + m_c^2}{r_a + r_b + r_c}$ and $\frac{m_a^2 + m_b^2 + m_c^2}{h_a + h_b + h_c}$ we can write the relationship:

7) In ΔABC :

$$\frac{m_a^2 + m_b^2 + m_c^2}{r_a + r_b + r_c} \leq \frac{m_a^2 + m_b^2 + m_c^2}{h_a + h_b + h_c}$$

Proof.

The inequality is equivalent with:

$$\frac{1}{r_a + r_b + r_c} \leq \frac{1}{h_a + h_b + h_c} \Leftrightarrow h_a + h_b + h_c \leq r_a + r_b + r_c \Leftrightarrow \frac{s^2 + r^2 + 4Rr}{2R} \leq 4R + r \Leftrightarrow s^2 \leq 8R^2 - 2Rr - r^2, \text{ which follows from Gerretsen's inequality: } s^2 \leq 4R^2 + 4Rr + 3r^2.$$

It remains to prove that:

$$4R^2 + 4Rr + 3r^2 \leq 8R^2 - 2Rr - r^2 \Leftrightarrow 2R^2 - 3Rr - 2r^2 \geq 0 \leq (R - 2r)(2R + r) \geq 0,$$

obviously from Euler's inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

□

REFERENCES

- [1] Mihály Bencze, Daniel Sitaru, Marian Ursărescu, *Olympic Mathematical Energy*. Studis Publishing House, Iași, 2018.
- [2] Daniel Sitaru, *Algebraic Phenomenon*. Paralela 45 Publishing House, Pitești, 2017, ISBN 978-973-47-2523-6
- [3] Daniel Sitaru, *Murray Klamkin's Duality Principle for Triangle Inequalities*. The Pentagon Journal-VOLUME 75 NO 2, Spring 2016.
- [4] Daniel Sitaru, Claudia Nănuță, *Generating Inequalities using Schweitzer's Theorem*. CRUX MATHEMATICORUM, Volume 42, NO. 1, January 2016.
- [5] Daniel Sitaru, Claudia Nănuță, *A "probabilistic" method for proving inequalities*. CRUX MATHEMATICORUM, Volume 43, NO. 7, September 2017.
- [6] Daniel Sitaru, Mihály Bencze, *699 Olympic Mathematical Challenges*. Studis Publishing House, Iași, 2017.
- [7] Daniel Sitaru, *Analytical Phenomenon*. Cartea Românească Publishing House, Pitești, 2018.
- [8] Daniel Sitaru, George Apostolopoulos, *The Olympic Mathematical Marathon*. Cartea Românească Publishing House, Pitești, 2018.
- [9] Daniel Sitaru, *Contest Problems*. Cartea Românească Publishing House, Pitești, 2018.
- [10] Mihály Bencze, Daniel Sitaru, *Quantum Mathematical Power*. Studis Publishing House, Iași, 2018.
- [11] Daniel Sitaru, *A Class of Inequalities in triangles with Cevians*. The Pentagon Journal, Volume 77 NO. 2, Fall 2017
- [12] Romanian Mathematical Magazine - Interactive Journal, www.ssmrmh.ro

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, ROMANIA.

Email address: dansitaru63@yahoo.com