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1) In AABC:
2 2 2
Mot T Me op_,
Ta+7T6+7c
Proposed by Dan Seclaman - Romania
Proof.
We prove the following lemma:
Lemma.
2) In AABC:
m2 + m? + m? B 3(s2 —r2 — 4Rr)
To + 76 +Te 2(4Rr + 1)
Proof.

Using Zmi = ZZaQ,ZaQ =2(s% — 12 —4Rr),2ra =4R+r.

Let’s get back to the main problem.
Using the Lemma we write the inequality:
3(s2 — 12 —4Rr)
2(4R+ )
which follows from Gerretsen’s inequality: s*> < 4AR* + 4Rr + 3r°.
It remains to prove that:
3(4R? +4Rr +3r* ) < 4R+ 7)* © R*—~Rr—2r >0 (R—2r)(2R+71) > 0,

obviously from Fuler’s inequality R > 2r.

<2R —r & 3s* < (4R +1)?

Equality holds if and only if the triangle is equilateral.

Remark.
Let’s emphasises an inequality having an opposite sense.

3) In AABC:
mﬁ + mg + mg

Ta + To+ Tc

> 3r.
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Proof.
Using the Lemma the inequality can be written:
3(s> —r2 —4Rr) 5 9
> 3r & s° > 12Rr + 3r7,
QAR+ r) - T =y
which follows from Gerretsen’s inequality: s*> > 16 Rr — 5r2.
It remains to prove that:
16Rr — 512 > 12Rr + 3r? < R > 2r (Buler’s inequality).
Equality holds if and only if the triangle is equilateral.
O
Remark.

We can write the double inequality:

4) In AABC:
2 2 2
gr< MatT Mt M op
Ta + 7o+ Te
Proof.
See inequalities 1) and 8).
Equality holds if and only if the triangle is equilateral.
O
Remark.

Replacing the sum ro, + 1y + re with hq + hy + he we propose:
5) In AABC:
mi + mg + mz 3R2
he +hy+he. — 4r
Proposed by Marin Chirciu - Romania
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Proof.
We prove the following lemma:
Lemma.
6) In AABC
mi—i—m%—i—mg_ s2 —r2 — 4Rr
ho + hy + he s2 4+ 12+ 4Rr
Proof.
3 s+ 1?2+ 4Rr
- 2 _ 2 2 o2 2 _
Using Zma = ZZ& ,Za =2(s*—r —4R7‘),Zha =——Sp
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Let’s get back to the main problem:
The left side inequality:
Using the Lemma the inequality from the left side can be written:
33-% > ? & 82> 12Rr + 3
which follows from Gerretsen’s inequality: s> > 16Rr — 5r2.
It remains to prove that:
16Rr — 512 > 12Rr 4 3r> & R > 2r (Euler’s inequality)
Equality holds if and only if the triangle is equilateral.
The inequality from the right:
. % < % & s*(R—4r) +r(4R* + 17Rr +4r%) > 0
We distinguish the following cases:
Case 1) If (R — 4r) > 0, the inequality is obviously.
Case 2) If (R — 4r) < 0, the inequality can be rewritten:
r(4R? + 17TRr + 4r%) > s*(4r — R)
which follows from Gerretsen’s inequality: s> < 4AR* + 4Rr + 3r°.

3R

It remains to prove that:
r(4R* + 17Rr 4 4r?) > (4R? + 4Rr 4 3r?)(4r — R) & R®* —2R*r + Rr? —2r> > 0
& (R —2r)(R%* +1?) > 0, obviously from Euler’s inequality R > 2r.
Equality holds if and only if the triangle is equilateral.

O
Remark.
2 2 2 2 2 2
Between the sums ¢ +mp e and e e we can write the relationship:
e + 75+ 7 ha+hb+hc
7) In AABC:
my +mg +m; _ mg +mp +m
ra+rb+rc - ha+hb+hc
Proof.
The inequality is equivalent with:
1 1 5%+ 1%+ 4Rr
< S hothpthe <retrptre s ————— <4R+r &
Ta+7b+7Tc ~ ha+hy+ he b b 2R

52 < 8R?*—2Rr—r2, which follows from Gerretsen’s inequality: s> < 4AR*+4Rr—+3r>.
It remains to prove that:
4R? +4Rr+3r* <8R?* —2Rr —1* < 2R* —3Rr —2r* > 0 < (R—2r)(2R+7r) > 0,
obviously from FEuler’s inequality R > 2r.

Equality holds if and only if the triangle is equilateral.
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