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Abstract: As we know from the basic elementary theory, the trigonometric inverse functions are

y = arcsin x, y = arccos x, y = arctg x and y = arcctg x. These functions by different authors are

also called cyclometric functions, and some are also called arc functions.

So far, in the literature of derivation theory, the derivative of these functions is used to represent

the formula that shows the derivative of the inverse function in general. So the formula is used:
g

Y. X

y

Following this work, we will introduce a new method by which we will find the derivative of the

functions in question by using the function derivation, definition in its entire range.
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1. Introduction and preliminaries
Definition: The derivative of the function y = f(x) at the salient pointx € ) E is called the

“"%}2‘“"), if this limit exist and it is finite. Thus

limit: limp,_,q



/ : fx+Ax)—f (%)
f iy, o = ()

As we know, to find the derivative of the function y = f(x) at the salient pointx € [) E according

to the formula (*), these actions should be carried out:
1. Calculate the addition Ay function that matches the Ax add-on argument.

Therefore, is found Ay= f(x + Ax) — f(x);

2. The addendum of report function with the addendum of argument are found: %

3. The value of limit of this report is found Ax — 0; f'(x)= Alimoﬁ
X—

Ax

Theorem (1): If it is given: f (x) = arc sin (x), then the value is equal
’ 1
f(x)_m: lx] <1

Proof: To proof the theorem (1), we use the equation (*) and we will have:

fx+Ax)—f(x)
Ax

f'(x)=limp, , or for our case:

f . arcsinx+Ax)—arcsi 1(x)
f1o)=limpy 0 A > (a1)

Using the formula:

arc sin A-arc sin B= arc sin(AN1 — B2-BV1 — AZ2), the fraction numerator to the expression

under the limit sign of (a,) shall be:

arcsin(x + Ax) — arcsinx = arcsin ((x + Ax) V1 — x2-x,/1 — (x + Ax)?)

When the last equation is subordinated to (a;), we will have

, . arcsin ((x+A4x) V1—x2—x/1—(x+Ax)?2
£/ (0=lim gy g o , (a)

The limit on the right side of the equation (a,) when Ax — 0 represent an indeterminant form



%. to be released from this indeterminant form, we use that lim,,_,, %1, under the

condition that lim g(x) =0 ... (I)
xX—>a

So in the equation (a,)) we act in this manner:

arcsin ((x+Ax) V1—x2—x,/1—(x+Ax)?)
(x+Ax)V1-x2—x/1—(x+Ax)2

(x+8x) V1—x2—x/1—(x+Ax)2
Ax 5 (a3)

f,(x):hmAx—m dimpy o

The first factor on the right hand side of the equation (a3), according to (I) is equal to 1.

By using this fact, (a3) takes the form:

(x+Ax) V1-x2—x/1-(x+Ax)2
Ax \/ 5 (a4—)

f’(x):limAx—m

As we know in (a,), when Ax — 0, the right side of the equation will be an indefinite form g.

Since the right side of (a,) is the limit of irrational expression, we to first eliminate the
indeterminant form there, we must first rationalize the fractional numerator under the sign of the

limit in question. In this manner we have:

1 . (x+A8x)%(1-x2)—x2(1—(x+Ax)?)
(x+Ax)V1—-x2+x/1—(x+Ax)2 limyy0 Ax , (as).

f,(x):hmAx—m

When Ax — 0 in the first limit in (as) will be gained ﬁ, while after adjusting the fractional

numerator under the expression of the second limit of (as) we will have:

N 1 2xAx+Ax?
f (x)_ 2xV1—x2 Alylcrll() Ax (a6)

The limit on the right side of the equation (a) as the limit of rational expression will be equal

to 2x, and in this way the equation (a4) will take the form:

f10= —= . 2%, (ar)



After adjusting on the right side of the equation (a,) we will have:

1

f'eo)= g (as)

This presents the proof of the theorem (1).

. o oo 1
So, according to theorem (1), it is: (arcsinx) —

Theorem (2): If it is given: f (x) =arccosx, then the value is equal

, _ 1
f(X)_ W’|x|<1

Proof: To proof the theorem (2), we use the equation (*) and we will have:

. Ax)— .
f'(x) =limp,_ W, or in our case

f’(x) _ arccos(x+Ax)—arccosx

Ax ’ (bl)

Using formula: arccos A- arccos B= arccos (AB+,/ (1 — A2)(1 — B?)), fraction numerator to

the expression under the limit sign of (b;) will be:

arccos(x + Ax) — arccosx = arccos(x(x + Ax) + \/(1 —x2)(1—(x+ Ax)z).

When replacing the last equation in (b;), we will have:

arccos(x(x+Ax)+\/(1—x2)(1— (x+Ax)2)

£'6o = Jim = , (b)

Limit on the right side of the equation (b,) when Ax — 0, represent an indeterminant form g

To be released from this indeterminant form, we get the substitution:

arccos(x(x + Ax) + \/(1 —x?)(1—(x+ Ax)z) =t (b3)

From where we will get it:

x(x + Ax) + \/(1 —x2)(1 — (x + Ax)?) = cost (by)

From equation (b,), Ax should be found. That's why we do so

J@ —x2)(1 — (x + Ax)? = cost — x? — xAx (bs)



When we equalize (bs) side by side we rise in square, we will get:

(1—x?)(1 — (x + Ax)?) = cos?t + x* + x2A%x — 2x%cost — 2xAxcost + 2x3Ax,  (bg)

By performing the necessary elementary actions in the equation(bg), we get:
A?x + 2x(1 — cost)Ax + 2x%(1 — cost) — sin’t = 0 (by).

As seen in (b;) a quadratic equation is obtained according to the Ax variable, whose solutions

are:
(be) {Ax = —x + xcost + sintvV1 — x2

8
Ax = —x + xcost — sintV1 — x2

From the equation (bg), we get the second solution for expression with which is equal toAx.

When Ax — 0 from (bs), t—=0 by replacing all of these data in (b,), us will have:

t
A _>0( x+xcost)—sintV1—x2

f'(x) = (bo)
Dividing it with t the numerator and the denominator of the fraction that it is in the expression

under the right side of the limit (bg) and by adjusting it, we will get:

1

"(x) = lim - b
f ( ) t50 COS;_lx—L?tm ( 10)
By using the condition of the function limits, the equation(b,,), will have the form:
1
f’(x) - —xlim—l_COSt—\/mlimﬂ (bll)
t-0

Since ltirrol 1_Ctos = 0,and ltlrrng = 1, at the equation (b;1) we will get:

f x) =— W (b12)
Equation (b;,) represents proof of the theorem (2).

So according to the theorem (2), is equal to:

1
1-x2"

(arccosx)'=—
Theorem (3).If it is given f (x) =arctgx, then the value is equal

fl(x)=

Proof: To proof theorem (3), we use the equation (*) and we will have:

1+x2



fx+Ax)—f(x)
Ax

f'(x) =limy,_ , Or in our case

arctg(x+Ax)—arctgx
e = o) arctgx, (c1)

. A-B . .
By using formulaarctgA — arctgB = arctg Toap fraction numerator to the expression under

the limit sign of (c;) will be:

Ax
arctg(x + Ax) — arctgx = arctg T+ 21 A0

When last equation is substituted in (c;),we will get:

X
retg—————
f0) =limyy o —=2222 L (cp)

Limit on the right side of the equation (c;,), when Ax — 0, represent an indeterminant form%.

To be released from this indefinite form, we will get the substitution:

Ax

arctg TirGian (c3)
From where we get it

Ax
1+x(x+Ax) tgt (C4)
Ax from equation (c,) will be equal to:

_ (14x?)tgt
Ax = 1-xtgt (¢s)

When Ax — 0,from equation (c3), t—0 by replacing all of these data in (c,), us will have:

, ) t
f1(x) =lime0 mayge (¢c6)
1-xtgt

By adjusting the expression under the sign of the limit on the right side of the equation (cg) we

will get:
f'(x) =lim_ (¢7)

By using the features of the function limits, the equation(c,), we will have the form:

t(1—xtgt)
(1+x2)tgt

, 1 . t ..
f (x)=mllmt_,oaltl_r)ré(1—xtgt) (cg)

Since lim;_,q é = 1and ltin(}(l — xtgt) = 1, equation (cg) will be transformed to the

1
1+x2 (Cg)

following: f'(x) =

By (cg9) we have proofed the theorem (3). So according to theorem (3), we have:



1
(arctgx) =
Theorem (4): If it is given f (x) =arcctgx, then the value is equal
f(x) ==

Proof: To proof theorem (4), we use the equation (*) and we will have:

fx+Ax)—f(x)
Ax

1
1+x2

f'(x) =limp,_ , Or in our case

, arcctg(x+Ax)—arcctgx
£ = p-arceigr, (@)

. AB . .
By using formulaarcctgA — arcctgB = arcctg BTJ:, fraction numerator to the expression

under the limit sign of (d;) will be:

x(x+Ax)+1
arcctg(x + Ax) — arcctgx = arcctg " Ax
When last equation is substituted in(d), we will get:
, . arcctg—x(xtij?ﬂ
£7(0) =limp o Tl —ae (dy)

Or because arcctg (-a) = —arcctg(a), and (d,) will be

arcct x(x+Ax)+1
! _ : 9 Ax
f(x) == limyy o T (d3)

Limit on the right side of the equation (d,), when Ax — 0, represent an indeterminant form g

To be released from this indefinite form, we get the substitution:

arcctg % =t (ds)
Thus we have
x2
Ax = ctgt—x (ds)
When Ax — 0,from equation (d,), t—0 by replacing all of these data in (d3) we will have:
, : t
f'(x) =lim;_, X2 (de)

ctgt—x

By adjusting the expression under the sign of the limit on the right side of the equation (dg) we

will get:

t(ctgt—x)
x2+1

(d7)

By using the features of the function limits, the equation(d;), will have the form:

f'(x) ==lim¢_q



1

) =—— (de)
The equation (dg) shows the proof of the theorem (4). It is obvious that

1
1+ x2

(arcctgx)' = —
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