RMM - Triangle ararathon $801=900$

ROMANIAN MATHEMATICAL MAGAZINE

Founding Editor
DANIEL SITARU
Available online WWW:ssmrmh.ro

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

RMM

TRIANGLE

M ARATHON

 801-900

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Proposed by

Daniel Sitaru - Romania,M uhammad Ozcelik-Turkey
Abdilkadir Altintas-Afyonkarashisar-Turkey M ehmet Sahin-Ankara-Turkey, M urat Oz-Turkey

Adil Abdullayev-Baku-Azerbaijan, Rahul Sethi-India Seyran Ibrahimov-M aasili-Azerbaidian
Bogdan Fustei-Romania, X.G. Chu - China
X.Z Yang - China, Nguyen Van Nho-Nghe An-Vietnam Marian Ursărescu - Romania, Rovsen Pirguliyev-SumgaitAzerbaidian, D.M.Batinetu-Giurgiu-Romania Neculai Stanciu-Romania

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro
Solutions by

Daniel Sitaru - Romania, Soumava Chakraborty-Kolkata-India Serban George Florin-Romania, Marian Ursărescu - Romania Omran Kouba-Damascus-Syria, Ravi Prakash - New Delhi-India Apostolis M anoloudis-Greece, Bogdan Fustei-Romania Rajsekhar Azaad-India, Soumitra M andal-Chandar Nagore-India Alexandru Capmare-Romania, M yagmarsuren Yadamsuren-Darkhan-M ongolia, M ehmet Sahin-Ankara-Turkey Radu Butelca-Romania, Sanong Huayrerai-Nakon Pathom-Thailand Seyran Ibrahimov-M aasilli-Azerbaidian

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

801. In $\triangle A B C, a \leq b, b=c, R=6, r=2$. Find a, b, c.

Proposed by Daniel Sitaru - Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\text { In } \triangle A B C, a \leq b, b=c, R=6, r=2, a, b, c=? \\
\Delta A B C \text { is isosceles with } A B=A C(\because b=c) \\
\therefore \text { the altitude from } A \text { to } B C \text { bisects } B C \Rightarrow h_{a}=m_{a} \Rightarrow h_{a}^{2}=m_{a}^{2} \\
\Rightarrow \frac{b^{2} c^{2}}{4 R^{2}}=\frac{2 b^{2}+2 c^{2}-a^{2}}{4} \Rightarrow \frac{b^{4}}{36}=4 b^{2}-a^{2}(\because R=6 \text { and } b=c) \Rightarrow \\
\Rightarrow a \stackrel{(1)}{=} \frac{b}{6} \sqrt{144-b^{2}} . \text { Now, } \Delta=\frac{a b c}{4 R} \stackrel{b y(1)}{\overline{(2)}} \frac{b^{3} \sqrt{144-b^{2}}}{144} . \text { Also, } \Delta=r s=2\left(\frac{a+b+c}{2}\right) \\
(\because r=2) \stackrel{b y(1)}{=} 2 b+\frac{b}{6} \sqrt{144-b^{2}} \stackrel{(3)}{=} \frac{b}{6}\left(12+\sqrt{144-b^{2}}\right) \\
(2),(3) \Rightarrow \frac{b^{3} \sqrt{144-b^{2}}}{144}=\frac{b}{6}\left(12+\sqrt{144-b^{2}}\right) \Rightarrow \sqrt{144-b^{2}}\left(b^{2}-24\right)=288 \\
\Rightarrow(x-24)^{2}(144-x)=288^{2}\left(x=b^{2}\right) \Rightarrow x^{2}-192 x+7488=0 \\
\Rightarrow x=96+24 \sqrt{3} \text { or, } x=96-24 \sqrt{3} \because b \geq a \therefore b \geq \frac{b}{6} \sqrt{144-b^{2}} \Rightarrow b^{2}=x \geq 108 \\
\therefore x=b^{2}=96+24 \sqrt{3} \Rightarrow b=2 \sqrt{24+6 \sqrt{3}}
\end{gathered}
$$

Using (1) and $b=2 \sqrt{24+6 \sqrt{3}}$, we get $a=\frac{\sqrt{2880-1152 \sqrt{3}}}{6}=4 \sqrt{5-2 \sqrt{3}} \Rightarrow$

$$
\Rightarrow a=4 \sqrt{5-2 \sqrt{3}}: a=4 \sqrt{5-2 \sqrt{3}}, b=c=2 \sqrt{24+6 \sqrt{3}} \text { (answer) }
$$

802.

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Prove that: $\frac{S 2}{S 1}=\phi$
Proposed by M uhammad Ozcelik-Turkey
Solution by Serban George Florin-Romania

$$
\begin{aligned}
& \frac{S_{2}}{S_{1}}=\frac{\frac{A C \cdot M C \cdot \sin 30^{\circ}}{2}}{\frac{M C \cdot B C \cdot \min 12^{\circ}}{2}}=\frac{A C \cdot \frac{1}{2}}{B C \cdot \sin 12^{\circ}}=\frac{A C}{2 \cdot B C \cdot \sin 12^{\circ}}=\frac{\sin 42^{\circ}}{2 \sin 96^{\circ} \cdot \sin 12^{\circ}} \\
& \triangle A B C \text {, sine theorem } \Rightarrow \frac{A C}{\sin 42}=\frac{B C}{\sin A}, \frac{A C}{\sin 42}=\frac{B C}{\sin 96}, \frac{A C}{B C}=\frac{\sin 42}{\sin 96} \\
& \frac{S_{2}}{S_{1}}=\frac{\sin 42^{\circ}}{2 \sin 96^{\circ} \cdot \sin 12^{\circ}}=\frac{\cos 48^{\circ}}{2 \cdot 2 \sin 48^{\circ} \cos 48^{\circ} \sin 12^{\circ}}=\frac{1}{4 \sin 48^{\circ} \sin 12^{\circ}} \\
& x=18^{\circ}, 5 x=90^{\circ}, 2 x=90^{\circ}-3 x, \sin 2 x=\sin \left(90^{\circ}-3 x\right), \sin 2 x=\cos 3 x \\
& 2 \sin x \cos x=4 \cos ^{3} x-3 \cos x, \cos x\left(2 \sin x-4 \cos ^{2} x+3\right)=0 \\
& \cos x \neq 0 \Rightarrow 2 \sin x-4\left(1-\sin ^{2} x\right)+3=0,4 \sin ^{2} x+2 \sin x-1=0 \Rightarrow \\
& \Rightarrow \sin A=-\frac{1+\sqrt{5}}{4}=\sin 18^{\circ}, \cos ^{2} 18^{\circ}=1-\sin ^{2} 18^{\circ}=1-\frac{1-2 \sqrt{5}+5}{16} \\
& \sin 48^{\circ}=\sin \left(30^{\circ}+18^{\circ}\right)=\sin 30^{\circ} \cos 18^{\circ}+\sin 18^{\circ} \cos 30^{\circ}= \\
& =\frac{\sqrt{10+2 \sqrt{5}}}{8}+\frac{-1+\sqrt{5}}{4} \cdot \frac{\sqrt{3}}{2}=\frac{\sqrt{10+2 \sqrt{5}}}{8}+\frac{\sqrt{15}-\sqrt{18}}{8} \\
& \sin 12^{\circ}=\sin \left(30^{\circ}-18^{\circ}\right)=\sin 30^{\circ} \cos 18^{\circ}-\sin 18^{\circ} \cos 30^{\circ}=\frac{\sqrt{10+2 \sqrt{5}}}{8}-\frac{\sqrt{15}-\sqrt{3}}{8} \\
& \sin 48^{\circ} \sin 12^{\circ}=\frac{10+2 \sqrt{5}}{64}-\frac{(\sqrt{15}-\sqrt{3})^{2}}{64}=\frac{10+2 \sqrt{5}-18+2 \sqrt{45}}{64}=\frac{-8+8 \sqrt{5}}{64}= \\
& =-\frac{1+\sqrt{5}}{8}, 4 \sin 48^{\circ} \sin 12^{\circ}=\frac{-1+\sqrt{5}}{2} \\
& \frac{S_{2}}{S_{1}}=\frac{1}{4 \sin 48^{\circ} \sin 12^{\circ}}=\frac{1}{\frac{-1+\sqrt{5}}{2}}=\frac{2}{-1+\sqrt{5}}=\frac{2(\sqrt{5}+1)}{5-1}=\frac{2(\sqrt{5}+1)}{4}=\frac{\sqrt{5}+1}{2}=\phi
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

803.

If R - circumradius of $A B C, r$ - inradius of $A B C, M_{a}, M_{b}, M_{c}$ - mid-points of

$$
\text { arcs then: } \frac{S_{1}+S_{2}+S_{3}}{S}=\frac{R}{r}-1
$$

Proposed by Abdilkadir Altintas-Afyonkarashisar-Turkey

Solution by Marian Ursarescu-Romania

Let $M_{a} D \perp B C$. Because $m(\widehat{A})=\frac{1}{2} m(\widehat{B C}) \Rightarrow m(\widehat{C O D})=m(\widehat{A}) \Rightarrow$

$$
\begin{gather*}
\Rightarrow \cos A=\frac{O D}{R} \Rightarrow O D=R \cos A \Rightarrow R-h_{1}=R \cos A \Rightarrow h_{1}=R(1-\cos A)=2 R \sin ^{2} \frac{A}{2} \\
\Rightarrow S_{1}=\frac{a h_{1}}{2}=R a \sin ^{2} \frac{A}{2} . \text { Similarly: } S_{2}=R a \sin ^{2} \frac{B}{2}, S_{3}=R_{c} \sin ^{2} \frac{C}{2} \Rightarrow \\
\frac{S_{1}+S_{2}+S_{3}}{3}=\frac{R\left(a \sin ^{2} \frac{A}{2}+b \sin ^{2} \frac{B}{2}+c \sin ^{2} \frac{C}{2}\right)}{S} \text { (1) } \tag{1}
\end{gather*}
$$

But in any $\triangle A B C \Rightarrow \sum a \sin ^{2} \frac{A}{2}=\frac{S(R-r)}{R}$
From (1) + (2) $\Rightarrow \frac{S_{1}+S_{2}+S_{3}}{S}=\frac{s(R-r)}{S}=\frac{s(R-r)}{s r}=\frac{R-r}{c}=\frac{R}{r}-1$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

804.

I - incenter of $A B C, O$ - center of circle passing through B, I and C P and Q tangency points of incircle. Prove: $\angle B P O=\angle O Q C$ Designed by Abdilkadir Altintas-Afyonkarshisar-Turkey

Solution by Omran Kouba-Damascus-Syria

Clearly, we have $\angle B O I=2 \angle B C I=\angle B C A$, and $\angle C O I=2 \angle C B I=\angle C B A$ hence

$$
\angle B O C=\angle B C A+\angle C B A=\pi-\angle B A C
$$

Thus, O belongs to the circumcircle ω of $A B C$, and to the perpendicular bisector of the segment $B C$, so O is the midpoint of the arc opposit A on ω. This proves that $A O$
is the angle bisector of $\angle B A C$, and in particular, A, I and O are collinear.
Now, triangles $\triangle A O P$ and $\triangle A O Q$ are congruent ($S A S$) which implies that $\angle A P O=\angle A Q O$, and the desired conclusion follows.
805.

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

I_{a}, I_{b}, I_{c} - excenters of $A B C, H_{a}, H_{b}, H_{c}$ - orthocenters of $I_{a} B C, I_{b} C A, I_{c} A B$ r, R inradius and circumradius respectively. Prove: $\frac{\left[A H_{c} B H_{a} C H_{b} A\right]}{\left[I_{a} I_{b} I_{c}\right]}=\frac{r}{R}$

Proposed by Abdilkadir Altintas-Afyonkarashisar-Turkey

Solution by M arian Ursarescu-Romania

$\Delta A I_{b} C \sim \Delta C I_{a} B \sim \Delta B I_{C} A \sim \Delta I_{a} I_{b} I_{C}$ with angles: $\frac{\pi}{2}-\frac{A}{2}, \frac{\pi}{2}-\frac{B}{2}, \frac{\pi}{2}-\frac{C}{2} \Rightarrow$

$$
\begin{gather*}
\frac{A\left[I_{a} B C\right]}{A\left[I_{a} I_{b} I_{c}\right]}=\left(\frac{I_{a} C}{I_{a} I_{c}}\right)^{2} \tag{1}\\
I_{c} C \perp I_{a} I_{b} \Rightarrow \frac{I_{a} C}{I_{a} I_{c}}=\cos \left(\widehat{B I_{a} C}\right)=\cos \left(\frac{\pi}{2}-\frac{A}{2}\right)=\sin \frac{A}{2}
\end{gather*}
$$

$$
\text { From (1)+(2) } \Rightarrow A\left[I_{a} B C\right]=A\left[I_{a} I_{b} I_{c}\right] \sin ^{2} \frac{A}{2}
$$

Similarly: $A\left[I_{b} A C\right]=A\left[I_{a} I_{b} I_{c}\right] \sin ^{2} \frac{B}{2}$ (3), $A\left[I_{c} A B\right]=A\left[I_{a} I_{b} I_{c}\right] \cdot \sin ^{2} \frac{C}{3}$
From (3) $\Rightarrow A\left[I_{a} I_{b} I_{c}\right]=A[A B C]+A\left[I_{a} I_{b} I_{c}\right]\left(\sin ^{2} \frac{A}{2}+\sin ^{2} \frac{B}{2}+\sin ^{2} \frac{C}{2}\right)$

$$
\begin{gather*}
\Rightarrow A\left[I_{a} I_{b} I_{c}\right]\left(1-\sin ^{2} \frac{A}{2}-\sin ^{2} \frac{B}{2}-\sin ^{2} \frac{C}{2}\right)=A[A B C]=S \Rightarrow \\
\Rightarrow A\left[I_{a} I_{b} I_{c}\right]=\frac{S}{1-\sin ^{2} \frac{A}{2}-\sin ^{2} \frac{B}{2}+\sin ^{2} \frac{C}{2}}=\frac{2 S}{\cos A+\cos B+\cos C-1} \text { (4) } \tag{4}
\end{gather*}
$$

But in any $\triangle A B C$ we have: $\cos A+\cos B+\cos C=1+\frac{r}{R}$ (5)

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

From (4) + (5) $\Rightarrow A\left[I_{a} I_{b} I_{c}\right]=\frac{2 S}{\frac{r}{R}}=\frac{2 R S}{r}=\frac{2 R s r}{r}=2 R s \Rightarrow A\left[I_{a} I_{b} I_{c}\right]=2 R s \quad$ (6) Now, we have: $m\left(\widehat{H_{a} B C}\right)=\frac{C}{2}, m\left(\widehat{H_{a} C B}\right)=\frac{B}{2}$ and $m\left(\widehat{B H_{a} C}\right)=\frac{\pi}{2}+\frac{A}{2}$, but in $\Delta B C I$

$$
(I=\text { incenter }), \text { we have } m(\widehat{I B C})=\frac{B}{2}, m(\widehat{I C B})=\frac{C}{2}, m(\widehat{B I C})=\frac{\pi}{2}+\frac{A}{2} \Rightarrow
$$

$$
\left.\begin{array}{r}
\Rightarrow A\left[B H_{c} C\right]=\frac{a r}{2} \text { and similarly we have } \\
A\left[H_{B} A C\right]=\frac{b r}{2}, A\left[A H_{c} B\right]=\frac{c r}{2}
\end{array}\right\} \Rightarrow
$$

$$
\text { From (7) } \Rightarrow A\left[A H_{c} B H_{a} C H_{b} A\right]=S+s r=2 s r
$$

$$
\text { From (6) }+ \text { (8) } \Rightarrow \frac{A\left[A H_{c} B H_{a} C H_{b} A\right]}{A\left[I_{a} I_{b} I_{c}\right]}=\frac{2 s r}{2 R s}=\frac{r}{R}
$$

806.

M_{1}, M_{2}, M_{3} - midpoints of sides, P - any point on circle centered at C and passes through A. Prove: $c^{2}=a^{2}-3 b^{2} \Rightarrow z^{2}=x^{2}+y^{2}$

Proposed by Abdilkadir Altintas-Afyonkarashisar-Turkey

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution by Marian Ursarescu-Romania

From median theorem $\Rightarrow z^{2}=\frac{2\left(P B^{2}+P A^{2}\right)-c^{2}}{4}, y^{2}=\frac{2\left(P B^{2}+P C^{2}\right)-a^{2}}{4}, x^{2}=\frac{2\left(P A^{2}+P C^{2}\right)-b^{2}}{4} \Rightarrow$
\Rightarrow we must show this: $\frac{2\left(P B^{2}+P A^{2}\right)-c^{2}}{4}=\frac{2\left(P B^{2}+P C^{2}\right)-a^{2}}{4}+\frac{2\left(P A^{2}+P C^{2}\right)-b^{2}}{4} \Leftrightarrow$ $2 P B^{2}+2 P A^{2}-c^{2}=2 P B^{2}+2 P C^{2}-a^{2}+2 P A^{2}+2 P C^{2}-b^{2} \Leftrightarrow$ $\Leftrightarrow-c^{2}=4 P C^{2}-a^{2}-b^{2} \Leftrightarrow 4 P C^{2}=a^{2}+b^{2}-c^{2}$

But $c^{2}=a^{2}-3 b^{2}$
From (1) + (2) we must show: $4 P C^{2}=4 b^{2} \Leftrightarrow P C=b$, true because $P C=R=b$.
807.

Prove that: $\frac{E C}{A E}=\phi$ (Golden ratio)
Proposed by M uhammed Ozcelik-Turkey

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution by Daniel Sitaru-Romania

$$
\begin{aligned}
& \frac{A E}{\sin 6^{\circ}}=\frac{B E}{\sin 99^{\circ}}, \frac{E C}{\sin 9^{\circ}}=\frac{B E}{\sin 66^{\circ}} \rightarrow \frac{E C}{A E}=\frac{\frac{B E \cdot \sin 9^{\circ}}{\sin 66^{\circ}}}{\frac{B E \cdot \sin 6^{\circ}}{\sin 99^{\circ}}}=\frac{\sin 9^{\circ} \cdot \sin 99^{\circ}}{\sin 6^{\circ} \cdot \sin 66^{\circ}}= \\
& =\frac{\frac{1}{2}\left(\cos 90^{\circ}-\cos 108^{\circ}\right)}{\frac{1}{2}\left(\cos 60^{\circ}-\cos 72^{\circ}\right)}=\frac{0+\sin 18^{\circ}}{\frac{1}{2}-\sin 18^{\circ}}=\frac{\frac{\sqrt{5}-1}{4}}{\frac{1}{2}-\frac{\sqrt{5}-1}{4}}=\frac{\sqrt{5}-1}{3-\sqrt{5}}= \\
& =\frac{(\sqrt{5}-1)(3+\sqrt{5})}{9-5}=\frac{3 \sqrt{5}+5-3-\sqrt{5}}{4}=\frac{1+\sqrt{5}}{2}=\phi
\end{aligned}
$$

808. In $\triangle A B C$ the following relationship holds:

$$
\sum \frac{r_{b}+r_{c}}{r_{a}}=s \sum \frac{a}{r_{a}^{2}}
$$

Mehmet Sahin-Ankara-Turkey
Solution by Daniel Sitaru-Romania

$$
\begin{aligned}
\sum \frac{r_{b}+r_{c}}{r_{a}} & =\sum \frac{\frac{s}{s-b^{+}}+\frac{S}{s-c}}{\frac{S}{s-a}}=\sum \frac{(s-b+s-c)(s-a)}{(s-b)(s-c)}=\sum \frac{a(s-a)}{(s-b)(s-c)}= \\
& =\sum \frac{a s(s-a)^{2}}{S^{2}}=\frac{s}{S^{2}} \sum a(s-a)^{2}=s \sum \frac{a}{\left(\frac{S}{s-a}\right)^{2}}=s \sum \frac{a}{r_{a}^{2}}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

809. If in $\triangle A B C, M \in(B C), N \in(C A), P \in(A B), \frac{M B}{M C}=\frac{N C}{N A}=\frac{P A}{P B}=3$ then find:

$$
\Omega=\frac{A M^{2}+B N^{2}+C P^{2}}{a^{2}+b^{2}+c^{2}}
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Soumava Chakraborty-Kolkata-India
Let $\vec{a}, \vec{b}, \vec{c}$ be position vectors of A, B, C respectively. Then position vectors of M is

$$
\begin{gathered}
\frac{1}{4}(\vec{b}+3 \vec{c}) \text {. Now, } A M^{2}=\left|\frac{\vec{b}+3 \vec{c}}{4}-\vec{a}\right|^{2}=\frac{1}{16}|(\vec{b}-\vec{a})+3(\vec{c}-\vec{a})|^{2}= \\
=\frac{1}{16}\left[|\vec{b}-\vec{a}|^{2}+9|\vec{c}-\vec{a}|^{2}+6(\vec{b}-\vec{a}) \cdot(\vec{c}-\vec{a})\right]=\frac{1}{16}\left[A B^{2}+9 A C^{2}+6 \overrightarrow{A B} \cdot \overrightarrow{A C}\right]
\end{gathered}
$$

Similarly, $B N^{2}=\frac{1}{16}\left[B C^{2}+9 A B^{2}+6 \overrightarrow{B C} \cdot \overrightarrow{B A}\right] ; C P^{2}=\frac{1}{16}\left[A C^{2}+9 B C^{2}+6 \overrightarrow{C A} \cdot \overrightarrow{C B}\right] \Rightarrow$

$$
\Rightarrow A M^{2}+B N^{2}+C P^{2}=\frac{10}{16}\left(A B^{2}+B C^{2}+C A^{2}\right)+\frac{6}{16} E
$$

Where $E=\overrightarrow{A B} \cdot \overrightarrow{A C}+\overrightarrow{B C} \cdot \overrightarrow{B A}+\overrightarrow{C A} \cdot \overrightarrow{C B}=-(\overrightarrow{B C} \cdot \overrightarrow{A B}+\overrightarrow{A B} \cdot \overrightarrow{C A}+\overrightarrow{C A} \cdot \overrightarrow{B C})$
Also, $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=\vec{O} \Rightarrow \overrightarrow{A B}^{2}+\overrightarrow{B C}^{2}+\overrightarrow{C A}^{2}-2 E=0 \Rightarrow E=\frac{1}{2}\left(A B^{2}+B C^{2}+C A^{2}\right)$

$$
\begin{gathered}
\therefore A M^{2}+B N^{2}+C P^{2}=\frac{10}{16}\left(A B^{2}+B C^{2}+C A^{2}\right)+\frac{3}{13}\left(A B^{2}+B C^{2}+C A^{2}\right)= \\
=\frac{13}{16}\left(A B^{2}+B C^{2}+C A^{2}\right) \Rightarrow \frac{A M^{2}+B N^{2}+C P^{2}}{a^{2}+b^{2}+c^{2}}=\frac{13}{16}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 2 by Ravi Prakash - New Delhi-India

Let $M C=x, N A=y, P B=z$.
Then $\boldsymbol{M B}=\mathbf{3 x}, \boldsymbol{N C}=\mathbf{3 y} \& P A=3 z \& B C=4 \boldsymbol{x}, \boldsymbol{A C}=\mathbf{y} \boldsymbol{y} \&$
$A B=4 z$. Stewart's theorem with cevian $A M$ gives

$$
16 z^{2} x+16 y^{2} 3 x=4 x\left(A M^{2}+3 x^{2}\right) \Rightarrow A M^{2} \stackrel{(1)}{=} 4 z^{2}+12 y^{2}-3 x^{2}
$$

Similarly, Stewart's theorem with cevian

$$
B N \Rightarrow 16 z^{2} \cdot 3 y+16 x^{2} y=4 y\left(B N^{2}+3 y^{2}\right) \Rightarrow
$$

$\Rightarrow B N^{2} \stackrel{(2)}{=} 12 z^{2}+4 x^{2}-3 y^{2} \&$ Stewart's theorem: with cevian $C P \Rightarrow$

$$
16 y^{2} z+16 x^{2} \cdot 3 z=4 z\left(C P^{2}+3 z^{2}\right) \Rightarrow C P^{2} \stackrel{(3)}{=} 4 y^{2}+12 x^{2}-3 z^{2}
$$

(1) + (2) + (3) $\Rightarrow A M^{2}+B N^{2}+C P^{2}=13\left(x^{2}+y^{2}+z^{2}\right) \Rightarrow \frac{A M^{2}+B N^{2}+C P^{2}}{a^{2}+b^{2}+c^{2}}=$

$$
=\frac{13\left(x^{2}+y^{2}+z^{2}\right)}{16\left(x^{2}+y^{2}+z^{2}\right)}=\frac{13}{16} \text { (Answer) }
$$

810.

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
B C=x=?
$$

Proposed by M urat Oz-Turkey

Solution 1 by Omran Kouba-Damascus-Syria

$$
\text { From the sine law we have } \frac{1}{(a+2) \sin 20^{\circ}}=\frac{a}{\sin 60^{\circ}}
$$

$$
\text { Thus } a(a+2)=\frac{\sin \left(3 \times 20^{\circ}\right)}{\sin 20^{\circ}}=1+2 \cos 40^{\circ}
$$

So, $(a+1)^{2}=2+2 \cos 40^{\circ}=4 \cos ^{2} 20^{\circ}$, and consequently
$a=2 \cos 20^{\circ}-1=4 \cos ^{2} 10^{\circ}-3$. Again, from the sine law we have: $\frac{x}{\sin 100^{\circ}}=\frac{a}{\sin 60^{\circ}}$.
Thus, $x=\frac{a \cos 10^{\circ}}{\cos 30^{\circ}}=\frac{\left(4 \cos ^{2} 10^{\circ}-3\right) \cos 10^{\circ}}{\cos 30^{\circ}}=\frac{4 \cos ^{3} 10^{\circ}-3 \cos 10^{\circ}}{\cos 30^{\circ}}=\frac{\cos \left(3 \times 10^{\circ}\right)}{\cos 30^{\circ}}=1$.
Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\sin 30^{\circ}=\frac{1}{(a+2) n}=\frac{1}{2} \Rightarrow n=\frac{2}{a+2}, \tan 30^{\circ}=\frac{1}{(a+2) t}=\frac{1}{\sqrt{3}} \Rightarrow t=\frac{\sqrt{3}}{a+2}
$$

Using Stewart's theorem, $\boldsymbol{a}^{2} \cdot \frac{2}{a+2}+\frac{1}{(a+2)^{2}} \boldsymbol{m}=\left(\boldsymbol{m}+\frac{2}{a+2}\right)\left\{\frac{3}{(a+2)^{2}}+\frac{2 m}{a+2}\right\} \Rightarrow$

$$
\Rightarrow m^{2}(a+2)^{2}+3 m(a+2)+3-a^{2}(a+2)^{2}=0 \Rightarrow m \stackrel{(1)}{=} \frac{-3+\sqrt{4 a^{2}(a+2)^{2}-3}}{2(a+2)}
$$

Again, $\frac{m}{\sin 10^{\circ}}=\frac{a}{\sin 150^{\circ}}=2 a \Rightarrow \sin 10^{\circ} \stackrel{(2)}{=} \frac{m}{2 a}$. Also, $\frac{m+n}{\sin 100^{\circ}}=\frac{a}{\sin 60^{\circ}} \Rightarrow \cos 10^{\circ} \stackrel{(3)}{=} \frac{\sqrt{3}(m+n)}{2 a}$
$\therefore \sin 20^{\circ}-2 \sin 10^{\circ} \cos 10^{\circ}=\frac{2 m}{2 a} \cdot \frac{\sqrt{3}(m+n)}{2 a}=\frac{\sqrt{3} m(m+n)}{2 a^{2}} \Rightarrow \sin \left(30^{\circ}-10^{\circ}\right)=$

$$
=\frac{\sqrt{3} m(m+n)}{2 a^{2}} \Rightarrow \sin 30^{\circ} \cos 10^{\circ}-\cos 30^{\circ} \sin 10^{\circ}=\frac{\sqrt{3} m(m+n)}{2 a^{2}} \Rightarrow
$$

$$
\Rightarrow \frac{\cos 10^{\circ}}{2}-\frac{\sqrt{3} \sin 10^{\circ}}{2}=\frac{\sqrt{3} m(m+n)}{2 a^{2}} \Rightarrow \frac{\sqrt{3}(m+n)}{2 a}-\sqrt{3} \frac{m}{2 a}=\frac{\sqrt{3}}{a^{2}}(m+n)(\text { using (2), (3)) }
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
\Rightarrow \frac{n}{2 a}=\frac{m(m+n)}{a^{2}} \Rightarrow a_{n}=2 m(m+n) \Rightarrow 2 m^{2}+2 m n-a_{n}=0 \\
\Rightarrow m=\frac{\sqrt{n^{2}+2 a_{n}-n}}{2}=\frac{\sqrt{\left(\frac{2}{a+2}\right)^{2}+2 a \frac{2}{(a+2)}-\frac{2}{a+2}}\left(\because n=\frac{2}{a+2}\right)}{2} \\
=\frac{2 \sqrt{1+a(a+2)^{2}-2}}{2(a+2)} \underset{\left(\frac{b y}{(1)}\right)}{\left(\frac{1}{4 a^{2}(a+2)^{2}-3}-3\right.} \\
2(a+2)
\end{gathered}
$$

Putting $a(a+2)=\alpha$, (4) becomes: $2 \sqrt{1+\alpha}+1=\sqrt{4 a^{2}-3} \Rightarrow$

$$
\begin{gathered}
\Rightarrow 4(1+\alpha)+1+4 \sqrt{1+\alpha}=4 \alpha^{2}-3 \Rightarrow \sqrt{1+\alpha}=a^{2}-\alpha-2=(\alpha-2)(\alpha+1) \Rightarrow \\
\Rightarrow 1=(\alpha-2)^{2}(\alpha+1)=\left(a^{2}+2 a-2\right)^{2}(a+1)^{2} \Rightarrow\left(a^{2}+2 a-2\right)(a+1)=1 \Rightarrow \\
\quad \Rightarrow a^{3}+3 a^{2}-3=0 \Rightarrow a^{2}(a+3)=3 \Rightarrow a^{2}(a+3)(a+1)=3(a+1) \Rightarrow \\
\Rightarrow a^{2}\left\{(a+2)^{2}-1\right\}=3(a+1) \Rightarrow a^{2}(a+2)^{2}-3=3 a+a^{2} \Rightarrow 4 a^{2}(a+2)^{2}-12= \\
=12 a+4 a^{2} \Rightarrow 4 a^{2}(a+2)^{2}-3 \stackrel{(5)}{=}(2 a+3)^{2} . \text { Now, } m+n=\frac{\sqrt{4 a^{2}(a+2)^{2}-3}}{2(a+2)}+\frac{4}{2(a+2)}= \\
\quad=\frac{\sqrt{4 a^{2}(a+2)^{2}-3}+1}{2(a+2)} \stackrel{b y(5)}{=} \frac{2 a+3+1}{2(a+2)} \stackrel{(u s i n g(1))}{=} 1 \Rightarrow x=m+n=1 \text { (Answer) }
\end{gathered}
$$

811. In $\triangle A B C$ the following relationship holds:

$$
\frac{r_{a}}{a}+\frac{r_{b}}{b}+\frac{r_{c}}{c}=\frac{s^{2}+\left(r_{a}+r_{b}+r_{c}\right)^{2}}{2\left[I_{a} I_{b} I_{c}\right]}, \quad \Delta I_{a} I_{b} I_{c}-\text { excentral triangle }
$$

Proposed by Mehmet Sahin-Ankara-Turkey

Solution by Daniel Sitaru-Romania

$$
\begin{aligned}
\sum \frac{r_{a}}{a}= & \sum \frac{b c r_{a}}{a b c}=\frac{S}{a b c} \sum \frac{b c}{s-a}=\frac{1}{\frac{a b c}{S}} \cdot \frac{s^{2}+(4 R+r)^{2}}{s}= \\
& =\frac{1}{2 \cdot \frac{1}{2} \cdot \frac{a b c r s}{r^{2} s}} \cdot \frac{s^{2}+\left(r_{a}+r_{b}+r_{c}\right)^{2}}{1}= \\
= & \frac{s^{2}+\left(r_{a}+r_{b}+r_{c}\right)^{2}}{2 \cdot \frac{a b c S}{2 r^{2} S}}=\frac{s^{2}+\left(r_{a}+r_{b}+r_{c}\right)^{2}}{2\left[I_{a} I_{b} I_{c}\right]}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

812. In $\triangle A B C$ the following relationship holds:

$$
\frac{a^{2}}{r_{b}+r_{c}}+\frac{b^{2}}{r_{c}+r_{a}}+\frac{c^{2}}{r_{a}+r_{b}}=4 R-2 r
$$

Proposed by Mehmet Sahin-Ankara-Turkey

Solution by Daniel Sitaru-Romania

$$
\begin{gathered}
\sum \frac{a^{2}}{r_{b}+r_{c}}=\sum \frac{a^{2}}{\frac{S}{s-b}+\frac{S}{s-c}}=\frac{1}{S} \sum \frac{a^{2}}{\frac{s-b+s-c}{(s-b)(s-c)}}=\frac{1}{r s} \sum a(s-b)(s-c)= \\
=\frac{1}{r s} \cdot 2 r s(2 R-r)=4 R-2 r
\end{gathered}
$$

813. In $\triangle A B C$ the following relationship holds:

$$
\frac{a}{r_{b}+r_{c}}+\frac{b}{r_{c}+r_{a}}+\frac{c}{r_{a}+r_{b}}=\frac{2\left(r_{a}+r_{b}+r_{c}\right)}{a+b+c}
$$

Proposed by Mehmet Sahin-Ankara-Turkey

Solution by Daniel Sitaru-Romania

$$
\begin{gathered}
\sum \frac{a}{r_{b}+r_{c}}=\sum \frac{a}{\frac{s}{s-b}+\frac{S}{s-c}}=\frac{1}{S} \sum \frac{a}{\frac{s-b+s-c}{(s-b)(s-c)}}=\frac{1}{r s} \sum(s-b)(s-c)= \\
\quad=\frac{1}{r s} \cdot r(4 R+r)=\frac{1}{\frac{a+b+c}{2}}\left(r_{a}+r_{b}+r_{c}\right)=\frac{2\left(r_{a}+r_{b}+r_{c}\right)}{a+b+c}
\end{gathered}
$$

814. In $\triangle A B C$ the following relationship holds:

$$
\frac{r_{b}+r_{c}}{r_{a}}+\frac{r_{c}+r_{a}}{r_{b}}+\frac{r_{a}+r_{b}}{r_{c}}=\frac{2\left[I_{a} I_{b} I_{c}\right]}{[A B C]}-2, \quad \Delta I_{a} I_{b} I_{c}-\text { excentral triangle }
$$

Proposed by Mehmet Sahin-Ankara-Turkey

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Solution by Daniel Sitaru-Romania

$$
\begin{aligned}
& \sum \frac{r_{b}+r_{c}}{r_{a}}= \sum \frac{\frac{S}{s-b}+\frac{S}{s-c}}{\frac{S}{s-a}}=\sum \frac{a(s-a)}{(s-b)(s-c)}=\sum \frac{a s(s-a)^{2}}{S^{2}}= \\
&=\frac{s}{S^{2}} \sum a(s-a)^{2}=\frac{s}{S r s} \cdot 2 r s(2 R-r)=\frac{2 s}{S}(2 R-r)=\frac{4 s R}{S}-\frac{2 S}{S}= \\
&=\frac{\frac{2 a b c}{2 r}}{S}-2=\frac{2 \cdot \frac{a b c S}{2 r^{2} s}}{S}-2=\frac{2\left[I_{a} I_{b} I_{c}\right]}{[A B C]}-2
\end{aligned}
$$

815. In $\triangle A B C$ the following relationship holds:

$$
\frac{r+r_{a}}{h_{a}}+\frac{r+r_{b}}{h_{b}}+\frac{r+r_{c}}{h_{c}}=\frac{\left[I_{a} I_{b} I_{c}\right]}{[A B C]}, \quad \Delta I_{a} I_{b} I_{c}-\text { excentral triangle }
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution by Daniel Sitaru-Romania

$$
\begin{aligned}
& \sum \frac{r+r_{a}}{h_{a}}=\sum \frac{\frac{S}{s}+\frac{S}{s-a}}{\frac{2 S}{a}}=\frac{1}{2} \sum \frac{a}{s}+\frac{1}{2} \sum \frac{a}{s-a}=\frac{2 s}{2 s}+\frac{1}{2} \cdot \frac{2(2 R-r)}{r}= \\
& =1+\frac{2 R-r}{r}=\frac{2 R}{r}=\frac{2 R S}{S}=\frac{2 R \cdot \frac{a b c}{4 R}}{S}=\frac{1}{S} \cdot \frac{a b c S}{2 r S}=\frac{1}{S} \cdot \frac{a b c S}{2 r^{2} s}=\frac{\left[I_{a} I_{b} I_{c}\right]}{[A B C]}
\end{aligned}
$$

816. In $\triangle A B C$ the following relationship holds:

$$
r_{a}\left(\frac{1}{b}+\frac{1}{c}\right)+r_{b}\left(\frac{1}{c}+\frac{1}{a}\right)+r_{c}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{s}{r}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution by Daniel Sitaru-Romania

$$
\begin{aligned}
& \sum r_{a}\left(\frac{1}{b}+\frac{1}{c}\right)=\sum\left(\frac{S}{s-a} \cdot \frac{b+c}{b c}\right)=S \sum \frac{2 s-a}{b c(s-a)}=\frac{S}{a b c} \sum \frac{a s+a(s-a)}{s-a}= \\
&=\frac{s S}{a b c} \sum \frac{a}{s-a}+\frac{S}{a b c} \cdot 2 s=\frac{s S}{a b c}\left(\frac{4 R-2 r}{r}+2\right)=\frac{s S}{4 R S} \cdot \frac{4 R}{r}=\frac{s}{r}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

817. In $\triangle A B C$ the following relationship holds:

$$
\begin{gathered}
\frac{a^{3}}{r_{b}+r_{c}}+\frac{b^{3}}{r_{c}+r_{a}}+\frac{c^{3}}{r_{a}+r_{b}}=2\left[I_{a} I_{b} I_{c}\right]-4 S, \\
\Delta I_{a} I_{b} I_{c}-\text { excentral triangle }
\end{gathered}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution by Daniel Sitaru-Romania

$$
\begin{gathered}
\sum \frac{a^{3}}{r_{b}+r_{c}}=\sum \frac{a^{3}}{\frac{S}{s-b}+\frac{S}{s-c}}=\frac{1}{S} \sum \frac{a^{3}(s-b)(s-c)}{s-c+s-b}= \\
=\frac{1}{S} \sum a^{2}(s-b)(s-c)=\frac{1}{r s} \cdot 4 r s^{2}(R-r)=4 s(R-r)=4 s R-4 S= \\
=\frac{4 R r s}{r}-4 S=\frac{4 R S}{r}-4 S=\frac{a b c S}{r S}-4 S=2 \cdot \frac{a b c S}{2 r^{2} S}-4 S=2\left[I_{a} I_{b} I_{c}\right]-4 S
\end{gathered}
$$

818. In $\triangle A B C$ the following relationship holds:

$$
\frac{R+r_{a}}{b c}+\frac{R+r_{b}}{c a}+\frac{R+r_{c}}{a b}=\frac{3}{2 r}-\frac{1}{2 R}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution by Daniel Sitaru-Romania

$$
\begin{aligned}
& \sum \frac{R+r_{a}}{b c}= \\
= & R \sum \frac{1}{b c}+\sum \frac{\frac{S}{s-a}}{b c}=R \cdot \frac{1}{a b c} \cdot 2 s+S \sum \frac{1}{b c(s-a)}= \\
= & \frac{1}{4 R S} \cdot \sum \frac{a}{s-a}=\frac{s}{2 S}+\frac{S}{4 R S} \cdot \frac{2(2 R-r)}{r}=\frac{s}{2 r s}+\frac{2 R-r}{2 R r}= \\
= & \frac{1}{2 r}+\frac{2 R-r}{2 R r}=\frac{R+2 R-r}{2 R r}=\frac{3}{2 r}-\frac{1}{2 R}
\end{aligned}
$$

819. In $\triangle A B C$ the following relationship holds:

$$
\frac{r_{a}^{2}}{r_{a}^{2}+s^{2}}+\frac{r_{b}^{2}}{r_{b}^{2}+s^{2}}+\frac{r_{c}^{2}}{r_{c}^{2}+s^{2}}=1-\frac{r}{2 R}
$$

Proposed by Adil Abdullayev-Baku-Azerbaijan

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution by Daniel Sitaru-Romania

$$
\begin{gathered}
\sum \frac{r_{a}^{2}}{r_{a}^{2}+s^{2}}=\sum \frac{\frac{S^{2}}{(s-a)^{2}}}{\frac{S^{2}}{(s-a)^{2}}+s^{2}}=\sum \frac{(s-b)(s-c)}{(s-b)(s-c)+s(s-a)}=\sum \frac{(s-b)(s-c)}{b c}= \\
=3+s^{2} \sum \frac{1}{b c}-s \sum \frac{b+c}{b c}=3+\frac{2 s^{3}}{4 R r s}-2 s \sum \frac{1}{a}=3+\frac{s^{2}}{2 R r}-\frac{2 s}{4 R r s}\left(s^{2}+r^{2}+4 R r\right)= \\
=3+\frac{s^{2}}{2 R r}-\frac{s^{2}}{2 R r}-\frac{r}{2 R}-2=1-\frac{r}{2 R}
\end{gathered}
$$

820. In $\triangle A B C, K$ - Lemoine's point, $K D \perp B C, K E \perp C A, K F \perp A B$,

$$
\begin{gathered}
K D=x, K E=y, K F=z . \text { Prove that: } \\
x h_{a} m_{a}^{2}+y h_{b} m_{b}^{2}+z h_{c} m_{c}^{2}=3 S^{2}
\end{gathered}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution by Daniel Sitaru-Romania

$$
\begin{gathered}
K-\text { Lemoine's point } \rightarrow \frac{x}{a}=\frac{y}{b}=\frac{z^{\prime}}{c} \stackrel{\text { denote }}{=} q \\
S=\frac{a x+b y+c z}{2}=\frac{q}{2} \sum_{c y c(a, b, c)} a^{2} \rightarrow \sum_{c y c(a, b, c)} a^{2}=\frac{2 S}{q} \\
\sum_{\begin{array}{l}
c y c(a, b, c) \\
c y c(x, y, z)
\end{array}} x h_{a} m_{a}^{2}=\sum_{c y c(a, b, c)} q a \frac{2 S}{a} m_{a}^{2}=2 S q \sum_{c y c(a, b, c)} m_{a}^{2}= \\
=2 S q \cdot \frac{3}{4} \sum_{c y c(a, b, c)} a^{2}=\frac{3 S q}{2} \cdot \frac{2 S}{q}=3 S^{2}
\end{gathered}
$$

821. In $\triangle A B C$ the following relationship holds:

$$
\frac{2 R-r_{a}}{h_{a}}+\frac{2 R-r_{b}}{h_{b}}+\frac{2 R-r_{c}}{h_{c}}=1
$$

Proposed by Mehmet Sahin-Ankara-Turkey

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution by Daniel Sitaru-Romania

$$
\begin{aligned}
& \sum \frac{2 R-r_{a}}{h_{a}}=2 R \sum \frac{1}{h_{a}}-\sum \frac{r_{a}}{h_{a}}=2 R \sum \frac{a}{2 S}-\sum \frac{\frac{S}{s-a}}{\frac{2 S}{a}}= \\
= & \frac{R}{S} \sum a-\frac{1}{2} \sum \frac{a}{s-a}=\frac{2 R s}{r s}-\frac{1}{2} \cdot \frac{2(2 R-r)}{r}=\frac{2 R}{r}-\frac{2 R}{r}+1=1
\end{aligned}
$$

822. In $\triangle A B C$ the following relationship holds:

Proposed by Daniel Sitaru - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \sum a \cos A=\sum(2 R \sin A \cos A)=R(\sin 2 A+\sin 2 B+\sin 2 C)= \\
& =R\{2 \sin C \cos (A-B)+2 \sin C \cos C\}=2 R \sin C\{\cos (A-B)-\cos (A+B)\} \\
& =2 R \sin C \cdot 2 \sin A \sin B=4 R \frac{a b c}{8 R^{3}} \stackrel{(1)}{=} \frac{a b c}{2 R^{2}} \\
& \text { Now, } b \cos B+c \cos C-a \cos A=R(\sin 2 B+\sin 2 C-\sin 2 A)= \\
& =R\{2 \sin A \cos (B-C)+2 \sin A \cos (B+C)\}=2 R \sin A \cdot 2 \cos B \cos C= \\
& =4 R \sin A \cos B \cos C=2 a\left(\frac{\prod \cos A}{\cos A}\right) \Rightarrow \frac{1}{b \cos B+c \cos C-a \cos A}= \\
& =\frac{1}{2 \cos A \cos B \cos C}\left(\frac{\cos A}{a}\right)=\frac{1}{2 \cos A \cos B \cos C}\left(\frac{b^{2}+c^{2}-a^{2}}{2 a b c}\right) \stackrel{(a)}{=} \frac{b^{2}+c^{2}-a^{2}}{4 a b c p} \quad(\text { where } p=\Pi \cos A) \\
& \text { Similarly, } \frac{1}{c \cos C+a \cos A-b \cos B} \stackrel{(b)}{=} \frac{c^{2}+a^{2}-b^{2}}{4 a b c p} \& \frac{1}{a \cos A+b \cos B-c \cos C} \stackrel{(c)}{=} \frac{a^{2}+b^{2}-c^{2}}{4 a b c p} \\
& \text { (a) }+ \text { (b) }+(\mathrm{c}) \Rightarrow \sum \frac{1}{b \cos B+c \cos C-a \cos A}-\frac{1}{\sum a \cos A} \stackrel{b y(1)}{=} \frac{\sum a^{2}}{4 a b c p}-\frac{2 R^{2}}{a b c}=\frac{\sum a^{2}-8 R^{2} p}{4 p a b c} \\
& =\frac{\sum a^{2}-8 R^{2}\left(\frac{s^{2}-4 R^{2}-4 R r-r^{2}}{4 R^{2}}\right)}{4 p a b c}=\frac{2\left(s^{2}-4 R r-r^{2}\right)-2\left(s^{2}-4 R^{2}-4 R r-r^{2}\right)}{4 p a b c}= \\
& =\frac{8 R^{2}}{4 p \cdot 4 R S}=\frac{R}{2 S p}=\frac{R}{2 S \cos A \cos B \cos C} \Rightarrow \sum \frac{1}{b \cos B+c \cos C-a \cos A}=
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
=\frac{R}{2 S(\Pi \cos A)}+\frac{1}{\sum a \cos A} \text { (Proved) }
$$

823.

$m(\Varangle A)=90^{\circ}$, the drawn circle has center in I - incenter of $\triangle A B C$ and radii $A I$. Prove that H is orthocenter of $\triangle A E F$.

Proposed by Rahul Sethi-India

Solution by Apostolis M anoloudis-Greece

$\Varangle B A C=90^{\circ}, I=$ incentre, the circle $(I, I A), H=D C \cap B G \Rightarrow$ $H=$ orthocenter of $\Delta A E F$
Is $I K=I L \Rightarrow D A=E F$ and $B K=B L$. Is $\Varangle D A I=45^{\circ}=\Varangle I D A \Rightarrow$ $\Varangle A I D=90^{\circ}=\Varangle A I G=$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$=\Varangle E I F$. But $\Varangle A E F+\Varangle D F E=\Varangle \frac{A I F}{2}+\Varangle \frac{D I E}{2}=\frac{(\Varangle A I F+\Varangle D I E)}{2}=90^{\circ}$. So, $D F \perp A E$. Similar $E G \perp A F \Rightarrow H=$ orthocenter of $\triangle A E F$.
824. $\triangle D E F$ - pedal triangle of I - incenter of acute $\triangle A B C$,

$$
\begin{gathered}
h_{1}, h_{2}, h_{3} \text { - altitudes in } \triangle D E F \\
\frac{\cos \frac{A}{2}}{h_{1}}+\frac{\cos \frac{B}{2}}{h_{2}}+\frac{\cos \frac{C}{2}}{h_{3}}=\frac{r_{a}+r_{b}+r_{c}}{S}
\end{gathered}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution by Soumava Chakraborty-Kolkata-India

From $\triangle F I E, F E^{2}=2 r^{2}-2 r^{2} \cos (\pi-A)=4 r^{2} \cos ^{2} \frac{A}{2} \Rightarrow F E \stackrel{(1)}{=} 2 r \cos \frac{A}{2}$
Similarly, $D E \stackrel{(2)}{=} 2 r \cos \frac{B}{2} \& F B \stackrel{(3)}{=} 2 r \cos \frac{C}{2}$. Also, r is the circumradius of $\triangle D E F$.
$\therefore \frac{1}{2} F E \cdot h_{1}=\frac{F E \cdot D E \cdot F D}{4 r}(=\operatorname{ar}(\triangle D E F)) \Rightarrow \frac{1}{2} 2 r \cos \frac{A}{2} \cdot h_{1}=\frac{8 r^{3}\left(\frac{s}{4 R}\right)}{4 r}$ (using (1), (2), (3))

$$
\Rightarrow \boldsymbol{h}_{1}=\frac{r s}{2 R \cos _{\frac{A}{2}}^{A}} \Rightarrow \frac{\cos \frac{A}{2}}{h_{1}} \stackrel{(a)}{=} \frac{2 R \cos ^{2} \frac{A}{2}}{S} \text {. Similarly, } \frac{\cos \frac{B}{2}}{h_{2}} \stackrel{(b)}{=} \frac{2 R \cos ^{2} \frac{B}{2}}{S} \& \frac{\cos \frac{C}{2}}{h_{3}} \stackrel{(c)}{=} \frac{2 R \cos ^{2} \frac{C}{2}}{S}
$$

(a) $+(\mathrm{b})+(\mathrm{c}) \Rightarrow L H S=\frac{R}{s} \sum(1+\cos A)=\frac{R}{s}\left(3+1+\frac{r}{R}\right)=\frac{4 R+r}{s}=\frac{\sum r_{a}}{s} \quad$ (Proved)

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

825. In $\triangle A B C$ the following relationship holds:

$$
\sum m_{a}^{2}+\frac{a^{2}}{4}+\frac{b^{2}}{4}+\frac{c^{2}}{4} \geq a b+b c+c a
$$

Proposed by Seyran Ibrahimov-Maasili-Azerbaidian

Solution by Daniel Sitaru-Romania

$$
\begin{aligned}
\sum\left(m_{a}^{2}+\frac{a^{2}}{4}\right)= & \sum\left(\frac{1}{2}\left(b^{2}+c^{2}\right)-\frac{a^{2}}{4}+\frac{a^{2}}{4}\right)=\sum \frac{1}{2}\left(b^{2}+c^{2}\right)= \\
& =a^{2}+b^{2}+c^{2} \geq a b+b c+c a
\end{aligned}
$$

826. In $\triangle A B C$ the following relationship holds:

$$
\begin{aligned}
a^{2} m_{a}+b^{2} m_{b}+c^{2} m_{c} \geq & b c h_{a}+c a h_{b}+a b h_{c} \\
& \text { Proposed by Daniel Sitaru - Romania }
\end{aligned}
$$

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\because \boldsymbol{m}_{a} \geq \frac{b^{2}+c^{2}}{4 R}, \text { etc (Tereshin), }: \\
\mathrm{LHS} \geq \sum \frac{a^{2}\left(b^{2}+c^{2}\right)}{4 R}=\frac{\sum a^{2} b^{2}}{2 R}=\sum \boldsymbol{a b} \cdot \frac{a b}{2 R}=\sum a b \boldsymbol{h}_{c}=b c \boldsymbol{h}_{a}+\boldsymbol{c a h _ { b } + a b h _ { c }} \\
\text { (proved) }
\end{gathered}
$$

827. In $\triangle A B C$ the following relationship holds:

$$
r \sqrt{r}\left(\frac{h_{a}}{w_{a}}+\frac{h_{b}}{w_{b}}+\frac{h_{c}}{w_{c}}\right) \geq 3 \sqrt{\prod\left(h_{a}-2 r\right)}
$$

Proposed by Bogdan Fustei-Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\prod(a+b)=2 a b c+\sum a b(2 s-c) \\
=2 s\left(s^{2}+4 R r+r^{2}\right)-4 R r s \stackrel{(1)}{=} 2 s\left(s^{2}+2 R r+r^{2}\right)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Also, $\frac{h_{a}}{w_{a}}=\frac{b c}{2 R} \cdot \frac{b+c}{2 b c \cos _{2}^{\frac{4}{4}}} \frac{(2)}{\frac{(2)}{4 R}} \cdot \frac{b+c}{\cos _{2}^{\frac{4}{4}}}$
Now, LHS $\underset{(3)}{\stackrel{A-G}{(3)}} 3 r \sqrt{r} \sqrt[3]{\Pi\left(\frac{h_{a}}{w_{a}}\right)} \stackrel{b y}{=}=(1),(2) \quad 3 r \sqrt{3} \sqrt[3]{\frac{1}{(4 R)^{3}} \cdot \frac{2 s\left(s^{2}+2 R r+r^{2}\right) \cdot 4 R}{s}}$

$$
=\frac{3 r \sqrt{r}}{2 R} \sqrt[3]{R\left(s^{2}+2 R r+r^{2}\right)}
$$

$$
R H S=3 \sqrt{\prod\left(\frac{2 r s}{a}-2 r\right)}=3 \sqrt[3]{8 r^{3} \cdot \prod\left(\frac{s-a}{a}\right)} \stackrel{(4)}{=} 3 r \sqrt{r} \sqrt{\frac{2 r}{R}}
$$

(3), (4) \Rightarrow it suffices to prove:

$$
\begin{equation*}
\frac{\sqrt[3]{R\left(s^{2}+2 R r+r^{2}\right)}}{2 R} \geq \sqrt{\frac{2 r}{R}} \Leftrightarrow\left(s^{2}+2 R r+r^{2}\right)^{2} \geq 512 R r^{3} \tag{5}
\end{equation*}
$$

LHS of (5) $\stackrel{\text { Gerretsen }}{\geq} 4 r^{2}(9 R-2 r)^{2} \xrightarrow[\geq]{\geq} 512 R r^{3} \Leftrightarrow(R-2 r)(81 R-2 r) \xrightarrow[\geq]{\geq} 0 \rightarrow$ true $\because R \stackrel{\text { Euler }}{\geq} 2 r$
(proved)
LHS $\stackrel{A-G}{\geq} 3 r \sqrt{r} \sqrt[3]{\frac{\Pi h_{a}}{\Pi w_{a}}} w_{a} \leq \sqrt{s(s-a)}$ etc $\underset{(1)}{(1)} 3 r \sqrt{r^{3}} \sqrt{\frac{2 r^{2} s^{2}}{R}} \cdot \frac{1}{\sqrt{s(s-a)(s-b) s(s-c)}}=$ $=3 r \sqrt{r} \sqrt[3]{\frac{2 r^{2} s^{2}}{R r s^{2}}}=3 r \sqrt{r} \sqrt{\frac{2 r}{R}}$

$$
R H S=\sqrt[3]{\prod\left(\frac{2 r s}{a}-2 r\right)}=\sqrt[3]{8 r^{3} \prod\left(\frac{s-a}{a}\right)} \stackrel{(2)}{=} 3 r \sqrt{r} \sqrt{\frac{2 r}{R}}
$$

(1), (2) \Rightarrow it suffices to show: $\left(\frac{2 r}{R}\right)^{2} \geq\left(\frac{2 r}{R}\right)^{3} \Leftrightarrow R \geq 2 r \rightarrow$ true (Euler)
(Proved)
828. In $\triangle A B C$ the following relationship holds:

$$
\sqrt{R\left(r_{b}+r_{c}\right)} \geq \frac{b+c}{2} \geq \sqrt{2 r\left(r_{b}+r_{c}\right)}
$$

Proposed by Bogdan Fustei-Romania

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gather*}
\sqrt{R\left(r_{b}+r_{c}\right)} \stackrel{(a)}{\geq} \frac{b+c}{2} \stackrel{(b)}{\geq} \sqrt{2 r\left(r_{b}+r_{c}\right)} \\
r_{b}+r_{c}=s\left(\frac{\sin \frac{B}{2}}{\cos \frac{B}{2}}+\frac{\sin \frac{C}{2}}{\cos \frac{C}{2}}\right)=s\left(\frac{\sin \left(\frac{B+C}{2}\right)}{\cos \frac{B}{2} \cos \frac{C}{2}}\right)=\frac{s \cos ^{2} \frac{A}{2}}{\Pi \cos ^{\frac{A}{2}}}=\frac{s \cos ^{2} \frac{A}{2}}{\frac{s}{4 R}}=4 R \cos ^{2} \frac{A}{2} \rightarrow(1 \tag{1}\\
\therefore(a) \stackrel{b y(1)}{\Leftrightarrow} \sqrt{4 R^{2} \cos ^{2} \frac{A}{2}} \geq \frac{b+c}{2}=2 R \sin \left(\frac{B+C}{2}\right) \cos \frac{B-C}{2} \Leftrightarrow \\
\Leftrightarrow 2 R \cos \frac{A}{2} \geq 2 R \cos \frac{A}{2} \cos \frac{B-C}{2} \Leftrightarrow \cos \frac{B-C}{2} \leq 1 \rightarrow\left(a_{1}\right) \\
\because-\frac{\pi}{2}<\frac{B-C}{2}<\frac{\pi}{2} \therefore 0<\cos \frac{B-C}{2} \leq 1 \Rightarrow\left(a_{1}\right) \Rightarrow(a) \text { is true } \\
2 r\left(r_{b}+r_{c}\right) \stackrel{b y(1)}{\Leftrightarrow} 8 R r \cos ^{2} \frac{A}{2}=8\left(\frac{a b c}{4 S}\right)\left(\frac{S}{s}\right)\left(\frac{s(s-a)}{b c}\right) \stackrel{(2)}{=} a(b+c-a) \\
\therefore(b) \Leftrightarrow \frac{(b+c)^{2}}{4} \geq a(b+c)-a^{2} \Leftrightarrow(b+c)^{2}+a^{2}-4 a(b+c) \geq 0 \\
\Leftrightarrow(b+c-2 a)^{2} \geq 0 \rightarrow t r u e \Rightarrow(b) \text { is true (Done) }
\end{gather*}
$$

829. In $\triangle A B C$ the following relationship holds:

$$
\sqrt{\frac{a}{s-a}}+\sqrt{\frac{b}{s-b}}+\sqrt{\frac{c}{s-c}} \geq 3 \sqrt{2}
$$

Proposed by Bogdan Fustei-Romania

Solution by Daniel Sitaru-Romania

$$
\begin{aligned}
& a=y+z, b=z+x, c=x+y \\
& 3 \sqrt{2}=\frac{3}{\sqrt{x y z}} \cdot \sqrt{2 x y z}=\frac{3}{\sqrt{x y z}} \cdot \sqrt[6]{8 x^{3} y^{3} z^{3}}=\frac{3}{\sqrt{x y z}} \cdot \sqrt[6]{x^{2} y^{2} z^{2} \cdot 8 x y z} \leq \\
& \stackrel{\text { CESARO }}{\underset{\leq}{s}} \frac{3}{\sqrt{x y z}} \cdot \sqrt[6]{x^{2} y^{2} z^{2} \cdot(y+z)(z+x)(x+y)}= \\
& =\frac{1}{\sqrt{x y z}} \cdot 3 \sqrt[3]{\sqrt{y z(y+z)} \cdot \sqrt{z x(z+x)} \cdot \sqrt{x y(x+y)}} \stackrel{G M-A M}{\sim} \frac{1}{\sqrt{x y z}} \cdot \sum \sqrt{y z(y+z)}=
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
=\sum \sqrt{\frac{y+z}{x}}=\sum \sqrt{\frac{a}{s-a}}=\sqrt{\frac{a}{s-a}}+\sqrt{\frac{b}{s-b}}+\sqrt{\frac{c}{s-c}}
$$

830. In $\triangle A B C$ the following relationship holds:

$$
\left(m_{a}+m_{b}+m_{c}\right)^{2} \leq 4 s^{2}-16 R r+5 r^{2}
$$

Proposed by X.G. Chu, X.Z Yang - China

Solution by Bogdan Fustei-Romania

Jack Garfunkel inequality: any $\triangle \boldsymbol{A B C}: \boldsymbol{m}_{\boldsymbol{a}}+\boldsymbol{l}_{\boldsymbol{b}}+\boldsymbol{h}_{\boldsymbol{c}} \leq \frac{\sqrt{3}}{2}(\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c})=\frac{\sqrt{3}}{2} \cdot \mathbf{2 p}=\boldsymbol{p} \sqrt{\mathbf{3}}$;

$$
\begin{gather*}
x=p-a>0 ; y=p-b>0 ; z=p-c>0 \Rightarrow a=y+z ; b=z+x ; c=x+y ; \\
m_{a}=\frac{1}{2} \sqrt{2\left(b^{2}+c^{2}\right)-a^{2}}=\frac{1}{2} \sqrt{2(x+z)^{2}+2(x+y)^{2}+(y+z)^{2}} \\
=\frac{1}{2} \sqrt{4 x^{2}+4 x(y+z)+y^{2}-2 y z+z^{2}}=\sqrt{\left(x+\frac{y+z}{2}\right)^{2}-y z} \\
=\frac{1}{\sqrt{3}} \sqrt{3\left(x+\frac{y+z}{2}-\sqrt{y z}\right)\left(x+\frac{y+z}{2}+\sqrt{y z}\right)} \leq \frac{1}{\sqrt{3}} \cdot \frac{3\left(x+\frac{y+z}{2}-\sqrt{y z}\right)\left(x+\frac{y+z}{2}+\sqrt{y z}\right)}{2} \\
=\frac{2 x+y+z-\sqrt{y z}}{\sqrt{3}} \\
l_{b}=\frac{2 \sqrt{a c}}{a+c} \sqrt{p(p-b)} \leq \sqrt{p(p-b)}=\sqrt{y(x+y+z)} \\
l_{c}=\frac{2 \sqrt{a b}}{a+b} \sqrt{p-c} \leq \sqrt{p(p-c)}=\sqrt{z(x+y+z)} \\
\Rightarrow m_{a}+l_{b}+l_{c} \leq \frac{2 x+y+z-\sqrt{x z}}{\sqrt{3}}+\sqrt{x+y+z}(\sqrt{y}+\sqrt{z}) \leq \frac{2 x+y+z-\sqrt{y z}}{\sqrt{3}}+ \\
+\frac{2}{3} \sqrt{x+y+z} \cdot \frac{\sqrt{3}}{2}(\sqrt{y}+\sqrt{z}) \leq \frac{1}{\sqrt{3}} 2 x+y+z-\sqrt{y z}+x+y+z+\frac{3}{4}(\sqrt{y}+\sqrt{z})^{2} \leq \\
\leq \frac{1}{\sqrt{3}}\left[3(x+y+z)-(\sqrt{y}-\sqrt{z})^{2}\right] \leq \frac{1}{\sqrt{3}} \cdot 3(x+y+z) \leq \frac{\sqrt{3}}{2}(a+b+c) \\
\Rightarrow m_{a}+l_{b}+l_{c} \leq \frac{\sqrt{3}}{2}(a+b+c)(1) \tag{1}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\Rightarrow \boldsymbol{m}_{a}+\boldsymbol{l}_{b}+\boldsymbol{h}_{c} \leq \frac{\sqrt{3}}{2}(a+b+c)
$$

Take into account: $\boldsymbol{m}_{\boldsymbol{a}}+\boldsymbol{l}_{\boldsymbol{b}}+\boldsymbol{l}_{\boldsymbol{c}} \leq \frac{\sqrt{3}}{2}(\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c})=\boldsymbol{p} \sqrt{3}$ (and the analogs)

$$
\begin{gathered}
\sum m_{a}+\sum l_{a}+\sum l_{a}=\sum m_{a}+2 \sum l_{a} \leq 3 \sqrt{3} p \leq \sqrt{4 p^{2}-16 R r+5 r^{2}}+ \\
+2 \sqrt{4 p^{2}-16 R r+5 r^{2}} \\
l_{a}+l_{b}+l_{c} \leq p \sqrt{3} \Rightarrow 2\left(l_{a}+l_{b}+l_{c}\right) \leq 2 \sqrt{3} p \\
p \sqrt{3} \leq \sqrt{4 p^{2}-16 R r+5 r^{2}} \Rightarrow 3 p^{2} \leq 4 p^{2}-16 R r+5 r^{2} \Rightarrow 16 R r-5 r^{2} \leq p^{2} \Rightarrow \\
\Rightarrow \text { Gerretsen's inequality } \\
\Rightarrow \sum m_{a} \leq \sqrt{4 p^{2}-16 R r+5 r^{2}} \Rightarrow\left(m_{a}+m_{b}+m_{c}\right)^{2} \leq 4 p^{2}-16 R r+5 r^{2} \\
\text { Q.E.D. }
\end{gathered}
$$

831. In $\triangle A B C$ the following relationship holds:

$$
\frac{w_{a}^{2}}{r_{b}+r_{c}}+\frac{w_{b}^{2}}{r_{c}+r_{a}}+\frac{w_{c}^{2}}{r_{a}+r_{b}} \leq \frac{1}{2}\left(h_{a}+h_{b}+h_{c}\right)
$$

Proposed by Bogdan Fustei-Romania
Solution by Daniel Sitaru-Romania

$$
\begin{aligned}
& \sum \frac{w_{a}^{2}}{r_{b}+r_{c}}=\sum \frac{w_{a}^{2}}{\frac{S}{s-b}+\frac{S}{s-c}}=\frac{1}{s} \sum \frac{w_{a}^{2}(s-b)(s-c)}{a} \leq \\
\leq & \frac{1}{S} \sum \frac{s(s-a)(s-b)(s-c)}{a}=\frac{s^{2}}{S} \sum \frac{1}{a}=s \cdot \frac{a b+b c+c a}{a b c}= \\
= & s \cdot \frac{s^{2}+r^{2}+4 R r}{4 R S}=\frac{1}{2} \cdot \frac{s^{2}+r^{2}+4 R r}{2 R}=\frac{1}{2}\left(h_{a}+h_{b}+h_{c}\right)
\end{aligned}
$$

832. In $\triangle A B C$:

$$
\prod \cos \frac{3 A}{2}=0 \rightarrow \sum a \sin ^{2} A \geq \frac{9 \sqrt{3}}{2} r
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution by Rajsekhar Azaad-India

$$
\begin{equation*}
\Pi \cos \frac{3 A}{2}=0 \Rightarrow \text { Any one angle of triangle is } \frac{\pi}{3} \tag{i}
\end{equation*}
$$

Let $A=\frac{\pi}{3} \Rightarrow \cos \frac{\pi}{3}=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \Rightarrow b^{2}+c^{2}-b c=a^{2}$
Now, $\sum a \sin ^{2} A=\frac{\sum a^{3}}{4 R^{2}}=\frac{a^{3}+b^{3}+c^{3}}{4 R^{2}}=\frac{a^{3}+(b+c)\left(b^{2}-b c+c^{2}\right)}{4 R^{2}}=\frac{a^{3}+a^{2}(b+c)}{4 R^{2}}$ \{from (i) $\}$

$$
\begin{gathered}
=\frac{a^{2}}{4 R^{2}} \cdot 2 S=2 S \cdot \sin ^{2} A=2 S \cdot \sin ^{2} A=2 S\left(\frac{\sqrt{3}}{2}\right)^{2} \\
=\frac{3 S}{2} \geq \frac{3}{2} \cdot 3 \sqrt{3} r=\frac{9 \sqrt{3} r}{2} \quad \text { (proved) }
\end{gathered}
$$

833. In $\triangle A B C$ the following relationship holds:

$$
\frac{4 s^{2}}{9 R} \sqrt{\frac{2}{R}} \leq \frac{a}{\sqrt{r_{a}}}+\frac{b}{\sqrt{r_{b}}}+\frac{c}{\sqrt{r_{c}}} \leq \frac{3 R}{\sqrt{r}}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \frac{4 s^{2}}{9 R} \sqrt{\frac{2}{R}}\left(\stackrel{(a)}{\leq} \frac{a}{\sqrt{r_{a}}}+\frac{b}{\sqrt{r_{b}}}+\frac{c}{\sqrt{r_{c}}} \stackrel{(b)}{\leq} \frac{3 R}{\sqrt{r}}\right. \\
& \sum \frac{a}{\sqrt{r_{a}}}=\sum \sqrt{a} \sqrt{\frac{a}{r_{a}}} \frac{C B S}{(1)} \sqrt{2 s} \sqrt{\sum \frac{a}{r_{a}}}
\end{aligned}
$$

Now, $\sum \frac{a}{r_{a}}=\frac{1}{\Delta} \sum a(s-a)=\frac{1}{\Delta}\left\{s(2 s)-\sum a^{2}\right\}=\frac{1}{\Delta}\left\{2 s^{2}-2\left(s^{2}-4 R r-r^{2}\right)\right\} \stackrel{(2)}{=} \frac{2(4 R+r)}{s}$
\therefore (1), (2) $\Rightarrow \sum \frac{a}{\sqrt{r_{a}}} \leq \sqrt{\mathbf{2 (4 R + r) \cdot 2}}=2 \sqrt{\frac{(4 R+r) r}{r}} \stackrel{\text { Euler }}{\leq} 2 \sqrt{\frac{\left(4 R+\frac{R}{2}\right)\left(\frac{R}{2}\right)}{r}}=\frac{3 R}{\sqrt{r}} \Rightarrow$ (b) is true

$$
\begin{gathered}
\text { Now, } \sum \frac{a}{\sqrt{r_{a}}}=\sum \frac{a^{2}}{a \sqrt{r_{a}}} \stackrel{B e r g s t r o ̈ m}{\geq} \frac{4 s^{2}}{\sum \sqrt{a} \sqrt{a r_{a}}} \frac{c B S}{\left(\frac{1}{3}\right)} \frac{4 s^{2}}{\sqrt{2 S \sqrt{\Sigma a r_{a}}}} \\
\sum a r_{a}=\sum\left(a \frac{\Delta}{s-a}\right)=\Delta \sum \frac{a-s+s}{s-a}=\Delta(-3)+\frac{\Delta s}{(s-a)(s-b)(s-c)} \sum(s-b)(s-c) \\
=\Delta\left[-3+\frac{s}{r^{2} s}\left(3 s^{2}-4 s^{2}+s^{2}+4 R r+r^{2}\right)\right]=\Delta\left(-3+\frac{4 R+r}{r}\right)=\left(\frac{4 R-2 r}{r}\right) \cdot r s s^{(4)}=s(4 R-2 r)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
(3), (4) $\Rightarrow \sum \frac{a}{\sqrt{r_{a}}} \geq \frac{4 s^{2}}{2 s \sqrt{2 R-r}} \stackrel{?}{\geq} \frac{4 s^{2}}{9 R} \sqrt{\frac{2}{R}} \Leftrightarrow 9 R \sqrt{R} \stackrel{?}{\geq} 2 s \sqrt{4 R-2 r} \Leftrightarrow 81 R^{3} \underset{(5)}{?} 8(2 R-r) s^{2}$

Now, RHS of (5) $\stackrel{\text { Gerretsen }}{\leq} 8(2 R-r)\left(4 R^{2}+4 R r+3 r^{2}\right) \stackrel{?}{\leq} 81 R^{3}$

$$
\Leftrightarrow 17 t^{3}-32 t^{2}-16 t+24 \geq 0\left(t=\frac{R}{r}\right) \Leftrightarrow
$$

$$
\Leftrightarrow(t-2)\{(17 t+36)(t-2)+60\} \geq 0 \rightarrow \text { true } \because t \stackrel{\text { Euler }}{\geq} 2 \Rightarrow \text { (a) is true }
$$

(Done)
Solution by Soumitra M andal-Chandar Nagore-India

$$
\begin{gathered}
\sum_{c y c} r_{a}=4 R+r, \sum_{c y c} r_{a} r_{b}=s^{2} \text { and } \prod_{c y c} r_{a}=s^{2} r \\
\text { Let } a \geq b \geq c \text { then } \frac{1}{r_{a}} \leq \frac{1}{r_{b}} \leq \frac{1}{r_{c}} \\
\sum_{c y c} \frac{a}{\sqrt{r_{a}}} \stackrel{\text { CHEBYSHEV's }}{\text { INEQUALITY }} \leq \frac{1}{3}\left(\sum_{c y c} a\right)\left(\sum_{c y c} \frac{1}{\sqrt{r_{a}}}\right)=2 s \cdot \sqrt{\frac{1}{r} \sum_{c y c} \frac{1}{r_{a}}}=\frac{2 s}{\sqrt{3 r}} \leq \frac{3 \sqrt{3} R}{\sqrt{3 r}}=\frac{3 R}{\sqrt{r}} \\
\sum_{c y c} \frac{a}{\sqrt{r_{a}}}=\sum_{c y c} \frac{a^{2}}{a \sqrt{r_{a}}} \geq \frac{(a+b+c)^{2}}{\sum_{c y c} a \sqrt{r_{a}}} \stackrel{\substack{\text { CAUCHYYKZ} \\
\text { SCHWAR }}}{\geq} \frac{4 s^{2}}{\sqrt{\left(\sum_{c y c} a^{2}\right)\left(\sum_{c y c} r_{a}\right)}} \\
\geq \frac{4 s^{2}}{\sqrt{9 R^{2}(4 R+r)}}=\frac{4 s^{2}}{3 R} \cdot \frac{1}{\sqrt{4 R+r}} \geq \frac{4 s^{2}}{3 R} \cdot \frac{1}{\sqrt{4 R+\frac{R}{2}}}=\frac{4 s^{2}}{9 R} \sqrt{\frac{2}{R}} \\
\text { (proved) }
\end{gathered}
$$

834. In $\triangle A B C$ the following relationship holds:

$$
\left(\frac{h_{b}+h_{c}}{m_{a}}\right)^{2}+\left(\frac{h_{c}+h_{a}}{m_{b}}\right)^{2}+\left(\frac{h_{a}+h_{c}}{m_{c}}\right)^{2} \leq \frac{8(2 R-r)}{R}
$$

Proposed by Bogdan Fustei - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\because m_{a} \geq \frac{b+c}{2} \cos \frac{A}{2} \text { etc, }
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
\therefore L H S \leq \sum\left\{\left(\frac{2 \Delta}{b}+\frac{2 \Delta}{c}\right) \frac{2}{(b+c) \cos \frac{A}{2}}\right\}^{2}=\sum 16 \Delta^{2}\left[\frac{b+c}{b c(b+c) \cos \frac{A}{2}}\right]^{2}= \\
=\sum\left[16 \Delta^{2} \frac{1}{b^{2} c^{2}} \cdot \frac{b c}{s(s-a)}\right]=\frac{16 \Delta^{2}}{s} \sum \frac{1}{b c(s-a)}=\frac{16 \Delta^{2}\left\{\sum a(s-b)(s-c)\right\}}{a b c s(s-a)(s-b)(s-c)} \\
=\frac{16 \Delta^{2}}{4 R r s \Delta^{2}} \sum\left\{a\left(s^{2}-s(b+c)+b c\right\}\right. \\
=\frac{4}{\operatorname{Rrs}}\left\{s^{2}(2 s)-2 s\left(s^{2}+4 R r+r^{2}\right)+12 R r s\right\}=\frac{8\left(2 R r-r^{2}\right)}{R r}=\frac{8(2 R-r)}{R} \\
\text { (proved) }
\end{gathered}
$$

835. In $\triangle A B C$ the following relationship holds:

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{4}{9 R^{2}}\left(w_{a} h_{b}+w_{b} h_{c}+w_{c} h_{a}\right)
$$

Proposed by Seyran Ibrahimov-M aasilli-Azerbaidian
Solution by Daniel Sitaru-Romania

$$
\begin{aligned}
& L H S=\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \stackrel{A M-G M}{\gtrless} 3 \sqrt[3]{\frac{a}{b} \cdot \frac{b}{c} \cdot \frac{c}{a}}=3, \quad \text { RHS }=\frac{4}{9 R^{2}} \sum w_{a} h_{b} \leq \frac{4}{9 R^{2}} \sum w_{a} w_{b} \leq \\
& \leq \frac{4}{9 R^{2}} \sum \sqrt{s(s-a) \cdot s(s-b)} \stackrel{A M-G M}{\underset{G}{\sim}} \frac{4 s}{9 R^{2}} \sum \frac{s-a+s-b}{2}=\frac{4 s^{2}}{9 R^{2}} \leq \\
& \text { mitrinovic } \\
& \stackrel{\text { RINOVIC }}{\check{\sim}} \frac{4}{9 R^{2}} \cdot \frac{27 R^{2}}{4}=3, \text { LHS } \geq 3 \geq R H S
\end{aligned}
$$

836. In $\triangle A B C$ the following relationship holds:

$$
\begin{aligned}
\left(s_{a}+m_{b}+h_{c}\right)\left(m_{a}+h_{b}+s_{c}\right)\left(h_{a}+s_{b}+m_{c}\right) \geq 729 r^{3} \\
\text { Proposed by Daniel Sitaru - Romania }
\end{aligned}
$$

Solution by Soumava Chakraborty-Kolkata-India

$$
\because \boldsymbol{m}_{a} \geq \boldsymbol{s}_{a} \geq \boldsymbol{h}_{a} \text { etc, } \therefore \text { LHS } \geq\left(\sum h_{a}\right)^{3} \stackrel{?}{\geq} \mathbf{7 2 9} r^{3} \Leftrightarrow \sum \boldsymbol{h}_{a} \stackrel{?}{\geq} \mathbf{9 r}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\Leftrightarrow \sum a b \stackrel{?}{\geq} 18 R r \Leftrightarrow s^{2} \geq 14 R r-r^{2}
$$

Now, $s^{2} \stackrel{\text { Gerretsen }}{\geq} 16 R r-5 r^{2} \xrightarrow[?]{\geq} 14 R r-r^{2} \Leftrightarrow 2 R r \xrightarrow[\geq]{\geq} 4 r^{2} \Leftrightarrow R \stackrel{?}{\geq} 2 r \rightarrow$ true
(Euler) (Proved)
837. In $\triangle A B C$ the following relationship holds:

$$
3 \sqrt[3]{w_{a}^{2} w_{b}^{2} w_{c}^{2}} \leq s^{2} \leq \sqrt{3\left(m_{a}^{4}+m_{b}^{4}+m_{c}^{4}\right)}
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Alexandru Capmare-Romania

$$
\begin{gathered}
\text { 1) } \begin{array}{c}
3 \sqrt[3]{w_{a}^{2} w_{b}^{2} w_{c}^{2}} \leq s^{2} \text { but } 3 \sqrt[3]{w_{a}^{2} w_{b}^{2} w_{c}^{2}} \leq w_{a}^{2}+w_{b}^{2}+w_{c}^{2} \text { so we have: } \\
w_{a}^{2}+w_{b}^{2}+w_{c}^{2} \leq s^{2} \\
w_{a}=\frac{2 b c}{b+c} \sqrt{\left.\frac{s(s-a)}{b c}\right|^{2}} \\
w_{a}^{2} \leq \frac{4(b c)^{2}}{(b+c)^{2}} \cdot \frac{\left(\frac{a+b+c}{2}\right)\left(\frac{a+b+c-2 a}{2}\right)}{b c} \\
w_{a}^{2}=\frac{b c\left[(b+c)^{2}-a^{2}\right]}{(b+c)^{2}} \Rightarrow \sum \frac{b c\left[(b+c)^{2}-a^{2}\right]}{(b+c)^{2}} \leq \frac{(a+b+c)^{2}}{4} \\
\text { but } \left.b c \leq \frac{(b+c)^{2}}{4} \Rightarrow \sum \frac{(b+c)\left[(b+c)^{2}-a^{2}\right]}{4(b+c)^{2}} \leq \frac{(a+b+c)^{2}}{4} \right\rvert\, \cdot 4 \\
\Rightarrow \sum(b+c)^{2}-a^{2} \leq(a+b+c)^{2} \\
\sum a^{2}+2 \sum a b \leq(a+b+c)^{2} \\
(a+b+c)^{2} \leq(a+b+c)^{2} \operatorname{true}(1)
\end{array}
\end{gathered}
$$

2) $\frac{(a+b+c)^{2}}{4} \leq \sqrt{3\left(m_{a}^{4}+m_{b}^{4}+m_{c}^{4}\right)}$ but $\frac{\left(m_{a}^{2}\right)^{2}}{1}+\frac{\left(m_{b}^{2}\right)^{2}}{1}+\frac{\left(m_{c}^{2}\right)^{2}}{1} \geq \frac{\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)^{2}}{3}$ so we have \Rightarrow

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
\Rightarrow \frac{(a+b+c)^{2}}{4} \leq \sqrt{3 \cdot \frac{\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)^{2}}{3}} \Rightarrow \frac{(a+b+c)^{2}}{4} \leq m_{a}^{2}+m_{b}^{2}+m_{c}^{2} \\
m_{a}^{2}+m_{b}^{2}+m_{c}^{2} \geq \frac{(a+b+c)^{2}}{4} ; \left.\sum \frac{2\left(b^{2}+c^{2}\right)-a^{2}}{4} \geq \frac{(a+b+c)^{2}}{4} \right\rvert\, \cdot 4 \\
\sum 2\left(b^{2}+c^{2}\right)-a^{2} \geq(a+b+c)^{2} ; 3 \sum a^{2} \geq \sum a^{2}+2 \sum a b ; 2 \sum a^{2} \geq 2 \sum a b \\
\sum a^{2} \geq \sum a b \text { true (2) } \\
\text { (1), (2) } \Rightarrow 3 \sqrt[3]{w_{a}^{2} w_{b}^{2} w_{c}^{2}} \leq s^{2} \leq \sqrt{3\left(m_{a}^{4}+m_{b}^{4}+m_{c}^{4}\right)}
\end{gathered}
$$

Solution 2 by Rajsekhar Azaad-India

$$
\begin{gather*}
w_{a}^{2}=\frac{4 b c}{(b+c)^{2}} \cdot s(s-a) \leq s(s-a) \quad \text { (1) } \tag{1}\\
\text { Now, } 3 \cdot \sqrt[3]{w_{a}^{2} w_{b}^{2} w_{c}^{2}} \leq w_{a}^{2}+w_{b}^{2}+w_{c}^{2} \quad(G M \leq A M) \\
\leq \sum s(s-a) \text { from (1) } \\
=s(3 s-2 s)=s^{2} \quad \text { (2) } \tag{2}\\
\text { Again, } m_{a}^{2}=\frac{2\left(b^{2}+c^{2}\right)-a^{2}}{4} \geq s(s-a) \\
\text { Now, } \sqrt{3\left(m_{a}^{4}+m_{b}^{4}+m_{c}^{4}\right)} \geq \sum m_{a}^{2} \quad\left[\because\left(\sum a\right)^{2} \leq 3 \sum a^{2}\right]
\end{gather*}
$$

838. In $\triangle A B C$ the following relationship holds:

$$
\sum \sqrt{\frac{r_{a}}{h_{a}}} \geq \frac{1}{6}\left(\sum \sqrt{\frac{m_{a}}{h_{a}}}\right)\left(\sum \frac{h_{b}+h_{c}}{m_{a}}\right)
$$

Proposed by Bodgan Fustei - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\sum \sqrt{\frac{r_{a}}{h_{a}}}=\sum \sqrt{\frac{\Delta}{s-a} \cdot \frac{a}{2 \Delta}} \stackrel{(1)}{=} \frac{1}{\sqrt{2}} \sum \sqrt{\frac{a}{s-a}}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{aligned}
& \sum \frac{h_{b}+h_{c}}{m_{a}} \stackrel{m_{a} \geq \frac{b+c}{2} \cos \frac{A}{2}}{\leq} \sum \frac{\frac{2 \Delta}{b}+\frac{2 \Delta}{c}}{\frac{b+c}{2} \cos \frac{A}{2}}=2 \Delta \sum\left[\left(\frac{b+c}{b c}\right) \cdot \frac{2}{(b+c)} \sqrt{\frac{b c}{s(s-a)}}\right] \\
&= \frac{4 \Delta}{\sqrt{s}} \sum \frac{1}{\sqrt{b c(s-a)}}=\frac{4 \Delta}{\sqrt{s a b c}} \sum \sqrt{\frac{a}{s-a}} \Rightarrow \sum \frac{h_{b}+h_{c}}{m_{a}} \stackrel{(2)}{=}\left(\sum \sqrt{\frac{a}{s-a}}\right)\left(\frac{4 \Delta}{\sqrt{s a b c}}\right) \\
& \text { Also, } \sum \sqrt{\frac{m_{a}}{h_{a}}} \operatorname{cBS} \leq \sqrt{\sum m_{a}} \sqrt{\sum \frac{1}{h_{a}}} \stackrel{m_{a} \leq 4 R+r}{\frac{\Sigma}{(3)}} \sqrt{\frac{4 R+r}{r}}
\end{aligned}
$$

(1), (2), (3) \Rightarrow it suffices to prove: $\frac{1}{\sqrt{2}} \geq \frac{1}{6} \sqrt{\frac{4 R+r}{r}} \frac{4 r s}{\sqrt{4 R r s^{2}}} \Leftrightarrow \frac{1}{2} \geq \frac{1}{36}\left(\frac{4 R+r}{r}\right)\left(\frac{16 r^{2} s^{2}}{4 R r s^{2}}\right)$

$$
\Leftrightarrow 9 R \geq \mathbf{2}(4 R+r) \Leftrightarrow R \geq 2 r \rightarrow \text { true (Euler) (Proved) }
$$

839. In $\triangle A B C$ the following relationship holds:

$$
\sqrt[3]{r_{a} r_{b}}+\sqrt[3]{r_{b} r_{c}}+\sqrt[3]{r_{c} r_{a}} \geq 3 \sqrt[3]{9 r^{2}}
$$

Proposed by Mehmet Sahin-Ankara-Turkey

Solution 1 by Daniel Sitaru-Romania

$$
\begin{aligned}
& \sum \sqrt[3]{r_{a} r_{b}}=\sum \sqrt[3]{\frac{S^{2}}{(s-a)(s-b)}}=\sum^{\frac{3}{\frac{s(s-a)(s-b)(s-c)}{(s-a)(s-b)}}=} \\
=\sqrt[3]{s} \sum \sqrt[3]{s-c} & \sqrt[A M-G M]{\geq} \sqrt[3]{s} \cdot \sqrt[3]{\prod \sqrt[3]{s-c}}=3 \sqrt[3]{s} \cdot \sqrt[3]{(s-a)(s-b)(s-c)}= \\
= & 3 \sqrt[9]{s^{2} S^{2}}=3 \sqrt[9]{s^{4} r^{2}} \stackrel{\text { MITRINOVIC }}{\geq} 3 \sqrt[9]{(3 \sqrt{3} r)^{4} r^{2}}=3 \sqrt[9]{\left(9 r^{2}\right)^{3}}=3 \sqrt[3]{9 r^{2}}
\end{aligned}
$$

Solution 2 by Myagmarsuren Yadamsuren-Darkhan-M ongolia

$$
\begin{gathered}
(s-a)(s-b)(s-c) \leq \frac{s^{3}}{27} \quad \text { (1) (True) } \\
(1) \Rightarrow \frac{\Delta^{3}}{(s-a)(s-b)(s-c)} \geq \frac{27 \Delta^{3}}{s^{3}} \Rightarrow r_{a} r_{b} r_{c} \geq 27 r^{3} \\
\frac{\sqrt[3]{r_{a} r_{b}}+\sqrt[3]{r_{b} r_{c}}+\sqrt[3]{r_{c} r_{a}}}{3} \stackrel{A M \geq G M}{\geq} \sqrt[9]{\left(r_{a} r_{b}\right)\left(r_{b} r_{c}\right)\left(r_{c} r_{a}\right)} \geq \sqrt[3]{9 r^{2}}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

840. If x, y, z are the distances from I - incenter to $B C, C A$ respectively $A B$ in $\triangle A B C$ then:

$$
\left(\frac{r}{2 x \sin \frac{A}{2}}\right)^{\frac{r}{\sin \frac{A}{2}}}+\left(\frac{r}{2 y \sin \frac{B}{2}}\right)^{\frac{r}{\sin \frac{B}{2}}}+\left(\frac{r}{2 z \sin \frac{C}{2}}\right)^{\frac{r}{\sin \frac{C}{2}}} \geq 3
$$

Proposed by Daniel Sitaru - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\because x=y=z=r, \therefore L H S S \stackrel{A-G}{\stackrel{1}{(1)}} 3 \sqrt[3]{\Pi\left(\frac{1}{2 \sin _{\frac{A}{2}}}\right)^{\frac{r}{\sin _{2}^{A}}}} .
$$

By weighted GM- weighted HM inequality: $S=\sqrt[\sum r \csc \frac{A}{2}]{\Pi\left(\frac{1}{2 \sin _{2} \frac{4}{2}}\right)^{\frac{r}{\sin \frac{A}{2}}}} \geq \frac{\sum r \csc \frac{A}{2}}{\sum \sin ^{4} \times 2 \sin \frac{A}{2}}$

$$
\begin{gathered}
=\frac{\sum \csc \frac{A}{2} \text { fensen } 3 \operatorname{3csc}\left(\frac{A+B+C}{6}\right)}{6}\left(\because f(x)=\csc \frac{x}{2}, \forall x \in(0, \pi) \text { is convex }\right)=1 \\
\Rightarrow \ln S \geq 0 \Rightarrow\left(\sum r \csc \frac{A}{2}\right) \ln S \geq 0 \Rightarrow \ln S^{\sum r \csc \frac{A}{2}} \geq 0 \Rightarrow \prod\left(\frac{1}{2 \sin \frac{A}{2}}\right)^{\frac{r}{\sin \frac{A}{2}(2)}} \geq 1 \\
\text { (1),(2) } \Rightarrow L H S \geq 3 \text { (proved) }
\end{gathered}
$$

841. In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a}}{w_{a}}+\frac{m_{b}}{w_{b}}+\frac{m_{c}}{w_{c}} \geq \sqrt{\frac{r}{2 R}}\left(\frac{r_{a}+r}{r_{a}-r}+\frac{r_{b}+r}{r_{b}-r}+\frac{r_{c}+r}{r_{c}-r}\right)
$$

Proposed by Bogdan Fustei - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\sum \frac{r_{a}+r}{r_{a}-r}=\sum \frac{\frac{\Delta}{s-a}+\frac{\Delta}{s}}{\frac{\Delta}{s-a}-\frac{\Delta}{s}}=\sum \frac{b+c}{a}=\frac{\sum a b(2 s-c)}{a b c}=
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
=\frac{2 s\left(s^{2}+4 R r+r^{2}\right)-12 R r s}{4 R r s} \stackrel{(1)}{=} \frac{s^{2}-2 R r+r^{2}}{2 R r}
$$

$$
\begin{aligned}
& \because \boldsymbol{m}_{a} \geq \frac{b+c}{2} \cos \frac{A}{2} \text { etc, } \therefore \sum \frac{m_{a}}{w_{a}} \geq \sum \frac{(2)}{\geq} \frac{(b+c) \cos \frac{A}{2}}{2} \cdot \frac{(b+c)}{2 b c \cos \frac{A}{2}}=\sum \frac{(b+c)^{2}}{4 b c}=\frac{\sum a\left(b^{2}+c^{2}+2 b c\right)}{4 a b c} \\
& =\frac{\sum a b(2 s-c)+6 a b c}{4 a b c}=\frac{2 s\left(s^{2}+4 R r+r^{2}\right)+12 R r s}{16 R r s}=\frac{s^{2}+10 R r+r^{2}}{8 R r}
\end{aligned}
$$

(1), (2) \Rightarrow it suffices to prove: $R\left(s^{2}+10 R r+r^{2}\right)^{2} \geq 8 r\left(s^{2}-2 R r+r^{2}\right)^{2}$

$$
\Leftrightarrow R\left[s^{4}+r^{2}(10 R+r)^{2}+2 s^{2}\left(10 R r+r^{2}\right)\right] \geq 8 r\left[s^{4}+r^{2}(2 R-r)^{2}-2 s^{2}\left(2 R r-r^{2}\right)\right]
$$

$$
\Leftrightarrow(R-2 r) s^{4}+2 s^{2} R\left(10 R r+r^{2}\right)+16 s^{2} r\left(2 R r-r^{2}\right)+R r^{2}(10 R+r)^{2}-8 r^{3}(2 R-r)^{2} \stackrel{(3)}{\geq} 6 r s^{4}
$$

LHS of (3) $\underset{(4)}{\text { Gerretsen }} s^{2}(R-2 r)\left(16 R r-5 r^{2}\right)+2 s^{2} R\left(10 R r+r^{2}\right)+$

$$
+16 s^{2} r\left(2 R r-r^{2}\right)+R r^{2}(10 R+r)^{2}-8 r^{3}(2 R-r)^{2}
$$

RHS of (3) $\underset{(5)}{\text { Gerretsen }} 6 r s^{2}\left(4 R^{2}+4 R r+3 r^{2}\right)$
(4), (5) \Rightarrow in order to prove (3), it suffices to show

$$
\begin{aligned}
& s^{2}\left\{(R-2 r)(16 R-5 r)+2 R(10 R+r)+16\left(2 R r-r^{2}\right)-6\left(4 R^{2}+4 R r+3 r^{2}\right)\right\}+ \\
&+ R r(10 R+r)^{2}-8 r^{2}(2 R+r)^{2} \geq 0 \Leftrightarrow s^{2}\left(12 R^{2}-27 R r-24 r^{2}\right)+R r(10 R+r)^{2}- \\
&-8 r^{2}(2 R-r)^{2} \geq 0 \Leftrightarrow \underbrace{s^{2}\left(12 R^{2}-27 R r+6 r^{2}\right)}_{=(12 R-3 r)(R-2 r) \geq 0}+R r(10 R+r)^{2}-8 r^{2}(2 R-r)^{2} \geq 30 r^{2} s^{2}
\end{aligned}
$$

LHS of (6)
$\underset{(7)}{\text { Gerretsen }}\left(16 R r-5 r^{2}\right)\left(12 R^{2}-27 R r+6 r^{2}\right)+\operatorname{Rr}(10 R+r)^{2}-8 r^{2}(2 R-r)^{2}$
\& RHS of (6) $\underset{(8)}{\substack{\text { Gerretsen }}} \mathbf{3 0} r^{2}\left(4 R^{2}+4 R r+3 r^{2}\right)$
(7), (8) \Rightarrow in order to prove (6), it suffices to show:

$$
\begin{gathered}
(16 R-5 r)\left(12 R^{2}-27 R r+6 r^{2}\right)+R(10 R+r)^{2}-8 r(2 R-r)^{2}- \\
-30 r\left(4 R^{2}+4 R r+3 r^{2}\right) \geq 0 \Leftrightarrow(t-2)\{(t-2)(73 t+136)+288\} \geq 0 \rightarrow \text { true } \\
\left(t=\frac{R}{r}\right) \because t \stackrel{\text { Euler }}{\geq} 2 \text { (proved) }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

842. In $\triangle A B C$ the following relationship holds:

$$
\sqrt{\frac{r_{a}}{h_{a}}}+\sqrt{\frac{r_{b}}{h_{b}}}+\sqrt{\frac{r_{c}}{h_{c}}} \geq 2\left(\frac{w_{a}}{r_{b}+r_{c}}+\frac{w_{b}}{r_{c}+r_{a}}+\frac{w_{c}}{r_{a}+r_{b}}\right)
$$

Proposed by Bogdan Fustei - Romania
Solution 1 by Soumitra Mandal-Chandar Nagore-India

$$
\text { We know, } a b c \geq 8(s-a)(s-b)(s-c) \text { now, }
$$

$$
\begin{gathered}
2 \sum_{c y c} \frac{w_{a}}{r_{b}+r_{c}} \stackrel{A . M \geq G . M .}{\leq} \sum_{c y c} \frac{w_{a}}{\sqrt{r_{b} r_{c}}} \leq \sum_{c y c} \frac{\sqrt{s(s-a)}}{\sqrt{\frac{\Delta}{s-b} \cdot \frac{\Delta}{s-c}}}=\frac{3 \sqrt{s(s-a)(s-b)(s-c)}}{\Delta}=3 \\
\sum_{c y c} \sqrt{\frac{r_{a}}{h_{a}}}=\sum_{c y c} \sqrt{\frac{\frac{\Delta}{\frac{s-a}{2 \Delta}}}{\frac{a}{s}}}=\sum_{c y c} \sqrt{\frac{a}{2(s-a)}} \stackrel{A \cdot M \geq G . M .}{\geq} 3 \sqrt[3]{\sqrt{\frac{a b c}{8 \prod_{c y c}(s-a)}} \geq 3} \\
\therefore \sum_{c y c} \sqrt{\frac{r_{a}}{h_{a}} \geq 2 \sum_{c y c} \frac{w_{a}}{r_{b}+r_{c}}}
\end{gathered}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\frac{r_{a}}{h_{a}}=\frac{s \tan \frac{A}{2}}{\frac{2 r s}{a}}=\frac{4 R \sin \frac{A}{2} \cos \frac{A}{2} \tan \frac{A}{2}}{2 r}=\frac{2 R}{r} \sin ^{2} \frac{A}{2} \Rightarrow \sqrt{\frac{r_{a}}{h_{a}}} \stackrel{(1)}{=} \sqrt{\frac{2 R}{r}} \sin \frac{A}{2} \\
\text { Similarly, } \sqrt{\frac{r_{b}}{h_{b}}} \stackrel{(2)}{=} \sqrt{\frac{2 R}{r}} \sin \frac{B}{2} \& \sqrt{\frac{r_{c}}{h_{c}}}(3) \sqrt{\frac{2 R}{r}} \sin \frac{c}{2} \\
(1)+(2)+(3) \Rightarrow L H S=\sqrt{\frac{2 R}{r}} \sum \sin ^{\frac{A}{2}} \stackrel{A-G}{\geq} 3 \sqrt{\frac{2 R}{r}} \sqrt[3]{\Pi \sin \frac{A}{2}}=3 \sqrt{\frac{2 R}{r}} \sqrt[3]{\frac{r}{4 R}} \geq 3 \Leftrightarrow \\
\Leftrightarrow\left(\frac{2 R}{r}\right)^{3}\left(\frac{r}{4 R}\right)^{2} \stackrel{?}{\geq} 1 \Leftrightarrow R \stackrel{?}{\geq} 2 r \rightarrow \text { true } \\
\therefore L H S \geq 3 \text { (3) }
\end{gathered}
$$

$$
\text { Now, } \frac{w_{a}}{r_{b}+r_{c}}=\frac{w_{a}}{\frac{\Delta}{s-b}+\frac{\Delta}{s-c}}=\frac{w_{a}(s-b)(s-c)}{\Delta(2 s-b-c)}=\frac{w_{a}((s-b)(s-c))^{2}}{a \sqrt{s(s-a)(s-b)(s-c)}} \leq \frac{G-A}{\leq} \frac{w_{a}\left(\frac{s-b+s-c}{2}\right)}{a \sqrt{s(s-a)}}=
$$

$$
=\frac{1}{2} \cdot \frac{w_{a}}{\sqrt{s(s-a)}} \stackrel{w_{a} \leq \sqrt{s(s-a)}}{(4)} \frac{1}{2} \text {. Similalry, } \frac{w_{b}}{r_{c}+r_{a}} \stackrel{(5)}{\leq} \frac{1}{2} \& \frac{w_{c}}{r_{a}+r_{b}} \stackrel{(6)}{\leq} \frac{1}{2}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

(4) + (5) + (6) $\Rightarrow R H S \stackrel{(7)}{\leq} 2 \cdot \frac{3}{2}=3$
(3), (7) \Rightarrow LHS \geq RHS (Proved)
843. In $\triangle A B C$ the following relationship holds:

$$
\frac{4 \cot ^{2} \frac{A}{2} \cot ^{2} \frac{B}{2} \cot ^{2} \frac{C}{2}}{9\left(\cot ^{2} \frac{A}{2}+\cot ^{2} \frac{B}{2}+\cot ^{2} \frac{C}{2}\right)+27} \leq 1
$$

Proposed by Nguyen Van Nho-Nghe An-Vietnam
Solution by Daniel Sitaru-Romania

$$
\begin{gathered}
\frac{4\left(\Pi \cot ^{2} \frac{A}{2}\right)^{2}}{9 \sum \cot ^{2} \frac{A}{2}+27}=\frac{4\left(\frac{s}{r}\right)^{2}}{9 \cdot \frac{s^{2}-2 r^{2}-8 R r}{r^{2}}+27}=\frac{\frac{4 s^{2}}{r^{2}}}{\frac{9 s^{2}+9 r^{2}-72 R r}{r^{2}}}= \\
=\frac{4 s^{2}}{9 s^{2}+9 r^{2}-72 R r} \leq 1 \leftrightarrow 5 s^{2} \geq 72 R r-9 r^{2} \\
5 s^{2} \stackrel{\text { GERRETSEN }}{\gtrless} 5\left(16 R r-5 r^{2}\right) \geq 72 R r-9 r^{2} \leftrightarrow 8 R r \geq 16 r^{2} \leftrightarrow R \stackrel{\text { EULER }}{\gtrless} 2 r
\end{gathered}
$$

844.

If $H M=x, H K=y, H L=z$ then:

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\frac{a}{x}+\frac{b}{y}+\frac{c}{z} \geq \frac{4 \sqrt{3} S}{R^{2}} \text { and } x y z \leq \frac{R^{5}}{4 S}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution by Soumava Ckakraborty-Kolkata-India

$$
\frac{a}{x}+\frac{b}{y}+\frac{c}{z} \stackrel{(a)}{\geq} \frac{4 \sqrt{3} S}{R^{2}} \& x y z \stackrel{(b)}{\leq} \frac{R^{5}}{4 S}
$$

$$
\frac{H M}{B D}=\frac{A H}{A D}(\because A H M \sim \Delta A D B) \Rightarrow \frac{x}{c|\cos B|}=\frac{2 R|\cos A|}{\frac{b c}{2 R}} \Rightarrow x=\frac{4 R^{2} c|\cos A||\cos B|}{b c}=
$$

$$
=\frac{4 R^{2}|\cos A \cos B|}{2 R \sin B} \Rightarrow \frac{x}{a}=\frac{2 R|\cos A \cos B|}{3 R \sin A \sin B} \Rightarrow \frac{a}{x} \stackrel{(1)}{=} \frac{\sin A \sin B}{|\cos A \cos B|} \text {. Similarly, } \frac{b}{y} \stackrel{(2)}{=} \frac{\sin B \sin C}{|\cos B \cos C|} \&
$$

$$
\frac{c}{z} \stackrel{(3)}{=} \frac{\sin C \sin A}{|\cos C \cos A|}
$$

$$
\text { (1) }+ \text { (2) }+ \text { (3) } \Rightarrow \frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\sum \frac{\sin A \sin B}{|\cos A \cos B|} \stackrel{A-G}{\geq} 3 \sqrt[3]{\frac{\sin ^{2} A \sin ^{2} B \sin ^{2} C}{\cos ^{2} A \cos ^{2} B \cos ^{2} C}}=
$$

$$
=3 \sqrt[3]{\frac{S^{2}}{4 R^{4}(\cos A \cos B \cos C)^{2}}}\left(\because S=2 R^{2} \sin A \sin B \sin C\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{aligned}
& \stackrel{\Pi \cos A \leq \frac{1}{8}}{\geq} 3 \sqrt[3]{\frac{S^{2}}{4 R^{4}} \cdot 64} \stackrel{\text { Mitrinovic }}{\geq} 3^{3} \sqrt{\frac{16 S^{3}}{R^{4} r\left(\frac{3 \sqrt{3} R}{2}\right)}} \stackrel{\text { Euler }}{\geq} 3 S^{3} \sqrt{\frac{16}{R^{4}\left(\frac{R}{2}\right)\left(\frac{3 \sqrt{3} R}{2}\right)}}=3 S_{\sqrt[3]{\frac{64}{3 \sqrt{3} R^{6}}}} \\
& =\frac{3 \cdot 4 S}{\sqrt{3} R^{2}}=\frac{4 \sqrt{3} S}{R^{2}} \Rightarrow \text { (a) is proved. Also, } x y z=\Pi\left(\frac{2 R|\cos A \cos B|}{\sin B}\right)=\frac{8 R^{3}(\cos A \cos B \cos C)^{2}}{\frac{a b c}{8 R^{3}}} \leq
\end{aligned}
$$

$$
\Pi \cos A \leq \frac{1}{8} \frac{64 R^{6} \cdot \frac{1}{6^{4}}}{4 R r}=\frac{R^{5}}{4 S} \Rightarrow(\mathbf{b}) \text { is proved (Done) }
$$

845. In $\triangle A B C$ the following relationship holds:

$$
\begin{aligned}
& \frac{1}{h_{a} w_{a} m_{a}}+\frac{1}{h_{b} w_{b} m_{b}}+\frac{1}{h_{c} w_{c} m_{c}} \leq \frac{2 R-r}{S^{2}} \\
& \text { Proposed by Bogdan Fustei - Romania }
\end{aligned}
$$

Solution 1 by Marian Ursărescu - Romania

We know $m_{a} w_{a} \geq s(s-a) \Rightarrow \frac{1}{m_{a} w_{a}} \leq \frac{1}{s(s-a)}$. Inequality becomes:

$$
\sum \frac{1}{h_{a} w_{a} m_{a}} \leq \sum \frac{1}{s(s-a) h_{a}}=\sum \frac{a}{2 S s(s-a)} \Rightarrow
$$ We must show this: $\frac{1}{2 S s} \sum \frac{a}{s-a} \leq \frac{2 R-r}{s^{2}} \Leftrightarrow$

$$
\begin{align*}
& \frac{1}{s} \sum \frac{a}{s-a} \leq \frac{2(2 R-r)}{s} \tag{1}\\
& \text { But } \sum \frac{a}{s-a}=\frac{2(2 R-r)}{r} \tag{2}
\end{align*}
$$

From (1) $+(2) \Rightarrow \frac{1}{s} \cdot \sum \frac{a}{s-a}=\frac{1}{s} \cdot \frac{2(2 R-r)}{r}=\frac{2(2 R-r)}{s} \Rightarrow(1)$ its true.
Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\because m_{a} \geq \frac{b+c}{2} \cos \frac{A}{2} \text { etc, } \\
\therefore m_{a} w_{a} h_{a} \geq \frac{b+c}{2} \cos \frac{A}{2} \cdot \frac{2 b c}{b+c} \cos \frac{A}{2} \cdot \frac{2 S}{a}=b c \cdot \frac{s(s-a)}{b c} \cdot \frac{2 r s}{a}=\frac{2 r s^{2}(s-a)}{a} \\
\Rightarrow \sum \frac{1}{m_{a} w_{a} h_{a}} \leq \frac{1}{2 r s^{2}} \sum \frac{a}{s-a}=\frac{1}{2 r s^{2}} \sum\left(\frac{a-s+s}{s-a}\right)=\frac{1}{2 r s^{2}}\left(-3+s \sum \frac{1}{s-a}\right)=
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro$$
\begin{gathered}
=\frac{1}{2 r s^{2}}\left\{-3+\frac{s}{r^{2} S} \sum(s-b)(s-c)\right\}= \\
=\frac{1}{2 r s^{2}}\left\{-3+\frac{1}{r^{2}}\left(3 s^{2}-4 s^{2}+s^{2}+4 R r+r^{2}\right)\right\}= \\
=\frac{1}{2 r s^{2}}\left(-3+\frac{4 R+r}{r}\right)=\frac{4 R-2 r}{2 r^{2} s^{2}}=\frac{2 R-r}{s^{2}}(\text { proved })
\end{gathered}
$$

846.

R - circumradius of $A B C, r$ - inradius of $A B C, D, E, F$ midpoints of sides $\boldsymbol{h}_{1}, \boldsymbol{h}_{2}, \boldsymbol{h}_{3}$ perpendiculars from midpoints to circumcircle

Prove: $h_{1}^{2}+h_{2}^{2}+h_{3}^{2} \geq 3 r^{2}$
Proposed by Abdilkadir Altintas-Afyonkarashisar-Turkey
Solution by Mehmet Sahin-Ankara-Turkey

$$
\sin \left(90^{\circ}-A\right)=\frac{R-h_{1}}{R} \Rightarrow \cos A=1-\frac{h_{1}}{R}, \cos B=1-\frac{h_{2}}{R}, \cos C=1-\frac{h_{3}}{R}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
1+\frac{r}{R}=3-\left(h_{1}+h_{2}+h_{3}\right) \cdot \frac{1}{R}, h_{1}+h_{2}+h_{3}=2 R-r
$$

Using Cauchy-Schwarz's inequality: $\left(h_{1}+h_{2}+h_{3}\right)^{2} \leq 3\left(h_{1}^{2}+h_{2}^{2}+h_{3}^{2}\right)$

$$
\begin{gathered}
(2 R-r)^{2} \leq 3\left(h_{1}^{2}+h_{2}^{2}+h_{3}^{2}\right) \text { and } \\
R \geq 2 r \Rightarrow 3\left(h_{1}^{2}+h_{2}^{2}+h_{3}^{2}\right) \geq(2 R-r)^{2} \geq(3 r)^{2} \Rightarrow h_{1}^{2}+h_{2}^{2}+h_{3}^{2} \geq 3 r^{2} \therefore
\end{gathered}
$$

847. In $\triangle A B C$ the following relationship holds:

$$
4\left(m_{a}+m_{b}+m_{c}\right) \geq \sum \frac{\left(h_{b}+h_{c}\right)\left(r_{a}+r\right)}{r_{a}-r}
$$

Proposed by Bogdan Fustei - Romania
Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\frac{\left(h_{b}+h_{c}\right)\left(r_{a}+r\right)}{r_{a}-r}=\frac{\left(\frac{2 \Delta}{b}+\frac{2 \Delta}{c}\right)\left(\frac{\Delta}{s-a}+\frac{\Delta}{s}\right)}{\frac{\Delta}{s-a}-\frac{\Delta}{s}}=\frac{2 \Delta}{b c}(b+c)(b+c) \cdot \frac{1}{a}=\frac{2 \Delta(b+c)^{2}}{4 R \Delta}= \\
=\frac{(b+c)^{2}}{2 R} \stackrel{\begin{array}{c}
\text { Reverse } \\
\text { Chebyshev }
\end{array}}{\leq} \frac{2\left(b^{2}+c^{2}\right)}{2 R}=\frac{4\left(b^{2}+c^{2}\right)}{4 R} \stackrel{\text { Tereshin }}{\vdots} \stackrel{(1)}{1)}_{2 R}^{4} m_{a} \\
\text { Similarly, } \frac{\left(h_{c}+h_{a}\right)\left(r_{b}+r\right)}{r_{b}-r} \stackrel{(2)}{\leq} 4 m_{b} \& \frac{\left(h_{a}+h_{b}\right)\left(r_{c}+r\right)}{r_{c}-r} \stackrel{(3)}{\leq} 4 m_{c} \\
\text { (1)+(2)+(3) } \Rightarrow 4\left(\sum m_{a}\right) \geq \sum \frac{\left(h_{b}+h_{c}\right)\left(r_{a}+r\right)}{r_{a}-r} \text { (proved) }
\end{gathered}
$$

Solution 2 by M yagmarsuren Yadamsuren-Darkhan-M ongolia

$$
\begin{equation*}
\Delta A B C: 4 \sum m_{a} \geq \sum \frac{\left(h_{b}+h_{c}\right)\left(r_{a}+r\right)}{r_{a}-r} \tag{1}
\end{equation*}
$$

a) $h_{b}+h_{c}=2 S\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{2 S}{b c} \cdot(b+c)=\frac{2 b c \sin A}{2 b c}(b+c)=\sin A(b+c)$

$$
\begin{gather*}
r_{a}+r=\frac{s}{s-a}+\frac{s}{s}=S\left(\frac{b+c}{s(s-a)}\right)=(b+c) \cdot \tan \frac{A}{2} \tag{**}\\
\text { b) } r_{a}-r=\frac{s}{p-a}-\frac{s}{p}=a \cdot \tan \frac{A}{2}(* *)
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
848. In $\triangle A B C$ the following relationship holds:

$$
\sum m_{a} \sqrt{\frac{r_{a}}{h_{a}}} \geq\left(6+\frac{h_{a}}{r_{a}}+\frac{h_{b}}{r_{b}}+\frac{h_{c}}{r_{c}}\right) \sqrt{\frac{R r}{2}}
$$

Proposed by Bodgan Fustei - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\sum m_{a} \sqrt{\frac{r_{a}}{h_{a}}}=\sum m_{a} \sqrt{\frac{s \tan \frac{A}{2} \cdot 4 R \sin \frac{A}{2} \cos \frac{A}{2}}{2 r s}} \geq \\
m_{a \geq 2}^{\frac{b+c}{2} \cos \frac{A}{2}} \frac{\sum}{(1)} \sum \frac{b+c}{2} \cos \frac{A}{2} \sqrt{\frac{2 R}{r}} \sin \frac{A}{2}=\frac{1}{4} \sum(b+c)\left(\frac{a}{2 R}\right) \sqrt{\frac{2 R}{r}}=\sqrt{\frac{2}{R r}}\left(\frac{\sum a b}{4}\right) \\
R H S=\left(6+\sum \frac{2 \Delta}{a} \cdot \frac{s-a}{\Delta}\right) \sqrt{\frac{R r}{2}}=\left(6+2 \sum \frac{s-a}{a}\right) \sqrt{\frac{R r}{2}}=\left(6+2 s \frac{\sum a b}{4 R r s}-6\right) \sqrt{\frac{R r}{2}}=
\end{gathered}
$$

$$
\stackrel{(2)}{=} \frac{\sum a b}{2 R r} \sqrt{\frac{\pi r}{2}} ;(\mathbf{1}),(\mathbf{2}) \Rightarrow \text { it suffices to prove: } \frac{\Sigma a b}{4} \geq \frac{\Sigma a b}{2 R r} \cdot \frac{R r}{2} \Leftrightarrow \mathbf{1} \geq \mathbf{1} \rightarrow \text { true (Proved) }
$$

$$
\begin{aligned}
& \text { (1) } \Rightarrow(\underbrace{m_{a} \geq \frac{b^{2}+c^{2}}{4 R}}_{\text {(True) })} \Rightarrow 4 m_{a} \geq \frac{b^{2}+c^{2}}{R} \geq \frac{(b+c)^{2}}{2 R}) \\
& \left\{\begin{array}{rl}
4 m_{a} & \geq \frac{(b+c)^{2}}{2 R} \\
4 m_{b} & \geq \frac{(a+c)^{2}}{2 R} \\
4 m_{c} & \geq \frac{(a+b)^{2}}{2 R}
\end{array} \Rightarrow 4 \sum m_{a} \geq \sum \frac{(b+c)^{2}}{2 R}=\sum \frac{\sin A(b+c)^{2}}{a}=\right. \\
& =\sum \frac{\sin A(b+c)(b+c) \tan \frac{A}{2} \underset{\substack{(* *) ;(* *)}}{a \tan \frac{A}{2}} \sum \frac{\left(h_{b}+h_{c}\right)\left(r_{a}+r\right)}{r_{a}-r}}{(=r *)}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
849.

In acute $\triangle A B C, D D^{\prime}=x, E E^{\prime}=y, F F^{\prime}=z$. Prove that:

$$
x y z \leq \frac{3 \sqrt{3} R^{2}}{64} \text { and } \frac{a}{z}+\frac{b}{x}+\frac{c}{y} \geq 8\left(1+\frac{r}{R}\right)
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution by Marian Ursarescu-Romania

$$
m(\widehat{D C H})=\frac{\pi}{2}-B \Rightarrow
$$

$\left.\begin{array}{c}\sin \left(\frac{\pi}{2}-B\right)=\frac{x}{D C} \\ \cos C=\frac{C D}{b} \Rightarrow C D=b \cos C\end{array}\right\} \Rightarrow x=b \cos B \cos C$ and similarly: $y=c \cos C \cos A$,

$$
z=a \cos A \cos B
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{equation*}
x y z \leq \frac{3 \sqrt{3}}{64} R^{3} \Leftrightarrow a b c(\cos A \cos B \cos C)^{2} \leq \frac{3 \sqrt{3}}{64} R^{3} \tag{1}
\end{equation*}
$$

But $\cos A \cos B \cos C \leq \frac{1}{8}($ in acute $\Delta)$
(1)+(2) \Rightarrow we must show: $a b c \leq 3 \sqrt{3} R^{3} \Leftrightarrow 8 R^{3} \sin A \sin B \sin C \leq 3 \sqrt{3} R^{3} \Leftrightarrow$

$$
\Leftrightarrow \sin A \sin B \sin C \leq \frac{3 \sqrt{3}}{8} \quad \text { (true) }
$$

$$
\begin{equation*}
\frac{a}{z}+\frac{b}{x}+\frac{c}{y} \geq \frac{8(R+r)}{R} \Leftrightarrow \frac{1}{\cos A \cos B}+\frac{1}{\cos B \cos C}+\frac{1}{\cos C \cos A} \geq \frac{8(R+r)}{R} \tag{3}
\end{equation*}
$$

But $\sum \frac{1}{\cos A \cos B}=\frac{4 R(R+r)}{s^{2}-(2 R+r)^{2}}$ (4). We must show: $\frac{4 R(R+r)}{s^{2}-(2 R+r)^{2}} \geq \frac{8(R+r)}{R} \Leftrightarrow$
$\Leftrightarrow R^{2} \geq \mathbf{2 s} s^{2}-\mathbf{2}(2 R+r)^{\mathbf{2}} \Leftrightarrow \mathbf{2} s^{\mathbf{2}} \leq \mathbf{2}(2 R+r)^{\mathbf{2}}$ true, because is Carlitz inequality.
850. If in $\triangle A B C, I$ - incenter then:

$$
A I+B I+C I \leq 4 r\left(\frac{m_{a}}{h_{b}+h_{c}}+\frac{m_{b}}{h_{c}+h_{a}}+\frac{m_{c}}{h_{a}+h_{b}}\right)
$$

Proposed by Bogdan Fustei - Romania
Solution by M yagmarsuren Yadamsuren-Darkhan-M ongolia

$$
\begin{gathered}
A I=\frac{r}{\sin \frac{A}{2}} ; B I ; C I \ldots \\
\sum A I=\sum \frac{r}{\sin \frac{A}{2}}=r \cdot \sum \frac{2 \cos \frac{A}{2}}{2 \sin \frac{A}{2} \cos \frac{A}{2}}=2 r \sum \frac{\cos \frac{A}{2}}{\sin A}=2 r \sum \frac{2 \frac{b+c}{2} \cos \frac{A}{2}}{\sin A(b+c)}= \\
=4 r \cdot \sum \frac{\frac{b+c}{2} \cos \frac{A}{2}}{\frac{a}{2 R}(b+c)} \leq 4 r \sum \frac{m_{a}}{h_{b}+h_{c}}
\end{gathered}
$$

851. In $\triangle A B C$ the following relationship holds:

$$
((s-a)(s-b))^{3}+((s-b)(s-c))^{3}+((s-c)(s-a))^{3}<\left(r r_{a}+r r_{b}+r r_{c}\right)^{3}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
\text { RHS }= & \left(\sum \frac{\Delta}{s} \cdot \frac{\Delta}{s-a}\right)^{3}=\left\{\sum \frac{s(s-a)(s-b)(s-c)}{s(s-a)}\right\}^{3} \stackrel{(1)}{=}\left\{\sum(s-b)(s-c)\right\}^{3} \\
& \text { Let }(s-a)(s-b)=x,(s-b)(s-c)=y,(s-c)(s-a)=z
\end{aligned}
$$

Then, using (1), given inequality becomes: $\sum x^{3}<\left(\sum x\right)^{3}, \forall x, y, z>0$

which is true (Hence proved)

Solution 2 by Myagmarsuren Yadamsuren-Darkhan-M ongolia

$$
\begin{gathered}
\sum\left(\frac{(s-a)}{\Delta} \cdot \frac{(s-b)}{\Delta} \cdot \Delta^{2}\right)^{3} \stackrel{\Delta=\sqrt{r \cdot r_{a} \cdot r_{b} \cdot r_{c}}}{=} \sum\left(\frac{r \cdot r_{a} \cdot r_{b} \cdot r_{c}}{r_{a} \cdot r_{b}}\right)^{3}=\sum\left(r \cdot r_{c}\right)^{3} \\
x^{3}+y^{2}+z^{3}<(x+y+z)^{3} \Leftrightarrow \sum_{\Delta}\left(r r_{c}\right)^{3}<\left(\sum_{\Delta} r r_{c}\right)^{3}
\end{gathered}
$$

852. In $\triangle A B C$ the following relationship holds:

$$
\sum m_{a} \sqrt{\frac{a}{s-a}} \geq \sqrt{2} \cdot \frac{\left(w_{a}+w_{b}+w_{c}\right)^{2}}{m_{a}+m_{b}+m_{c}}
$$

Proposed by Bogdan Fustei - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& w_{a} \leq m_{a}, \text { etc } \therefore \sum w_{a} \leq \sum m_{a} \Rightarrow R H S \leq \sqrt{2} \sum w_{a} \stackrel{w_{a} \leq \sqrt{s(s-a)}, \text { etc }}{\leq} \sqrt{2 s} \sum \sqrt{s-a} \leq \\
& \quad C_{B S} \\
& \leq \sqrt{6 s} \sqrt{\sum(s-a)}=\sqrt{6} s \therefore R H S \stackrel{(1)}{\leq} \sqrt{6} s \because m_{a} \leq \frac{b+c}{2} \cos \frac{A}{2^{\prime}} \text { etc, } \\
& \therefore L H S \geq \sum\left(\frac{b+c}{2} \cos \frac{A}{2}\right) \sqrt{\frac{a}{s-a}}=\sum\left\{\left(\frac{b+c}{2}\right) \sqrt{\frac{s(s-a)}{b c}} \sqrt{\frac{a}{s-a}}\right\}= \\
&=\sum\left\{\left(\frac{b+c}{2}\right) \sqrt{\frac{s a^{2}}{a b c}}\right\}=\sqrt{\frac{s}{a b c}}\left(\frac{2 \sum a b}{2}\right)=\sqrt{\frac{1}{4 R r}}\left(s^{2}+4 R r+r^{2}\right)
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\therefore L H S \stackrel{(2)}{\geq} \sqrt{\frac{1}{4 R r}}\left(s^{2}+4 R r+r^{2}\right) \\
(1),(2) \Rightarrow \text { it suffices to prove } \\
: \sqrt{\frac{1}{4 R r}}\left(s^{2}+4 R r+r^{2}\right) \geq \sqrt{6} s \Leftrightarrow\left(s^{2}+4 R r+r^{2}\right)^{2} \geq 24 R r s^{2} \\
\Leftrightarrow s^{4}+r^{2}+(4 R+r)^{2}+2 s^{2}\left(4 R r+r^{2}\right)-24 R r s^{2} \stackrel{(3)}{\geq} 0 . \text { Now, } \\
\text { LHS of (1) } \stackrel{\text { Gerretsen }}{\geq} s^{2}\left(16 R r-5 r^{2}\right)+r^{2}(4 R+r)^{2}+2 s^{2}\left(4 R r+r^{2}\right)-24 R r s^{2}= \\
=r^{2}(4 R+r)^{2}-3 r^{2} s^{2}=r^{2}\left((4 R+r)^{2}-3 s^{2}\right) \stackrel{\text { Trucht }}{\geq} 0 \Rightarrow(3) \text { is true (Proved) }
\end{gathered}
$$

853. In $\triangle A B C$ the following relationship holds:

$$
\frac{a}{R+r_{a}}+\frac{b}{R+r_{b}}+\frac{c}{R+r_{c}} \geq \frac{2 s}{3 R-r}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution 1 by Marian Ursarescu-Romania

$$
\begin{gather*}
\frac{a}{R+r_{a}}+\frac{b}{R+r_{b}}+\frac{c}{R+r_{c}}=\frac{a^{2}}{a R+a r_{a}}+\frac{b^{2}}{b R+b r_{b}}+\frac{c^{2}}{c R+c r_{c}} \geq \\
\geq \frac{(a+b+c)^{2}}{R(a+b+c)+a r_{a}+b r_{b}+c r_{c}} \quad(\text { from Cauchy's inequality } \Rightarrow \\
\Rightarrow \sum \frac{a}{R+r_{a}} \geq \frac{4 s^{2}}{2 R s+a r_{a}+b r_{b}+c r_{c}} \text { (1) } \tag{1}\\
\operatorname{But} \sum a r_{a}=2 s(2 R-r) \text { (2) } \tag{2}
\end{gather*}
$$

From (1)+(2) $\Rightarrow \sum \frac{a}{R+r_{a}} \geq \frac{4 s^{2}}{2 R s+2 s(2 R-r)} \Leftrightarrow \sum \frac{a}{R+r_{a}} \geq \frac{4 s^{2}}{2 s(R+2 R-r)} \Leftrightarrow$

$$
\Leftrightarrow \sum \frac{a}{R+r_{a}} \geq \frac{2 S}{3 R-r} \text { (done) }
$$

Solution 2 by Soumitra Mandal-Chandar Nagore-India

$$
\sum_{c y c}(s-a)(s-b)=r(4 R+r)
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\sum_{c y c} \frac{a}{R+r_{a}}=\sum_{c y c} \frac{a^{2}}{a R+a r_{a}} \geq \frac{(a+b+c)^{2}}{R(a+b+c)+\sum_{c y c} a r_{a}}=\frac{4 s^{2}}{2 s R+\sum_{c y c} a r_{a}}
$$

we need to prove, $\frac{4 s^{2}}{2 s R+\sum_{c y c} a r_{a}} \geq \frac{2 s}{3 R-r} \Leftrightarrow 2 s(3 R-r) \geq 2 s R+\sum_{c y c} a r_{a} \Leftrightarrow$
$\Leftrightarrow 2 s(2 R-r) \geq \Delta \sum_{c y c} \frac{s-(s-a)}{s-a} \Leftrightarrow 2 s(2 R-r)+3 \Delta \geq \Delta s \sum_{c y c} \frac{1}{s-a}=$ $=s^{2} r \frac{\sum_{c y c}(s-a)(s-b)}{\prod_{c y c}(s-a)} \Leftrightarrow s(4 R+r) \geq \frac{s^{2} r}{s r^{2}} \sum_{c y c}(s-a)(s-b) \Leftrightarrow$
$\Leftrightarrow r(4 R+r) \geq \sum_{c y c}(s-a)(s-b)$. Which is true Hence Proved
854. If in $\triangle A B C, N$ - ninepoint center, I - incenter, I_{a}, I_{b}, I_{c} - excenters then:

$$
\frac{N I_{a}+N I_{b}+N I_{c}}{A I_{a} \cdot I I_{a}+B I_{b} \cdot I I_{b}+C I_{c} \cdot I I_{c}} \geq \frac{6 r}{R^{2}}
$$

Proposed by Daniel Sitaru - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\sin \frac{C}{2}=\frac{B I}{I I_{a}}=\frac{r}{\sin \frac{B}{2} \cdot I I_{a}} \Rightarrow I I_{a} \stackrel{(1)}{=} \frac{r}{\sin \frac{B}{2} \sin \frac{C}{2}} \therefore A I_{a}=\frac{r}{\sin \frac{A}{2}}+\frac{r \sin \frac{A}{2}}{\pi \sin \frac{A}{2}}=
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{array}{r}
\stackrel{(2)}{=} \frac{r\left(\sin \frac{B}{2} \sin \frac{C}{2}+\sin \frac{A}{2}\right)}{\pi \sin \frac{A}{2}} \therefore A I_{a} \cdot I I_{a} \stackrel{b y(1),(2)}{=} \frac{r^{2}\left(\pi \sin \frac{A}{2}+\sin ^{2} \frac{A}{2}\right)}{\left(\pi \sin \frac{A}{2}\right)^{2}} \\
=\frac{r^{2} \frac{r}{4 R}+r^{2} \sin ^{2} \frac{A}{2}}{\frac{r^{2}}{16 R^{2}}} \stackrel{(a)}{=} \frac{4 R r+16 R^{2} \sin ^{2} \frac{A}{2}}{1}
\end{array}
$$

Similarly, $B I_{b} \cdot I I_{b} \stackrel{(b)}{=} 4 R r+16 R^{2} \sin ^{2} \frac{B}{2} \& C I_{c} \cdot I I_{c} \stackrel{(c)}{=} 4 R r+16 R^{2} \sin ^{2} \frac{C}{2}$
(a) $+(\mathrm{b})+(\mathrm{c}) \Rightarrow \sum A I_{a} \cdot I I_{a}=12 R r+8 R^{2} \sum(1-\cos A)=12 R r+8 R^{2}\left(3-1-\frac{r}{R}\right)=$

$$
=12 R r+8 R(2 R-r) \stackrel{(3)}{=} 16 R^{2}+4 R r
$$

\because the three excircles touch the nine-point circle, $\therefore N I_{a}=r_{a}+\frac{R}{2}, N I_{b}=r_{b}+\frac{R}{2}$,

$$
\begin{aligned}
& N I_{c}=r_{c}+\frac{R}{2}: \sum N I_{a}=\sum r_{a}+\frac{3 R}{2}=4 R+r+\frac{3 R}{2} \stackrel{(4)}{=} \frac{11 R+2 r}{2} \\
& (3),(4) \Rightarrow L H S=\frac{11 R+2 r}{2\left(16 R^{2}+4 R r\right)} \stackrel{\text { Euler }}{\geq} \frac{22 r+2 r}{32 R^{2}+4 R^{2}}=\frac{24 r}{36 R^{2}}=\frac{2 r}{3 R^{2}} \text { (Proved) }
\end{aligned}
$$

855. In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a} \cdot h_{a}}{(b+c)^{2}}+\frac{m_{b} \cdot h_{b}}{(c+a)^{2}}+\frac{m_{c} \cdot h_{c}}{(a+b)^{2}} \geq \frac{9 r^{2}}{4 R^{2}}
$$

Proposed by Mehmet Sahin-Ankara-Turkey

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 1 by Myagmarsuren Yadamsuren-Darkhan-M ongolia

$$
\begin{gathered}
\frac{w_{a}^{2}}{4 b c s(s-a)}=\frac{1}{(b+c)^{2}}(*) \\
(*) \Rightarrow \sum \frac{m_{a} h_{a} w_{a}^{2}}{4 b c s(s-a)}=\sum \frac{m_{a} \frac{b c}{2 R} w_{a}^{2}}{4 b c s(s-a)}=\frac{1}{8 s R} \cdot \sum \frac{m_{a} \cdot w_{a}^{2}}{s-a} \geq\left[\begin{array}{c}
m_{a} \geq \frac{b+c}{2} \cdot \cos \frac{A}{2} \\
w_{a}=\frac{2 \sqrt{b} \cdot \cdot \sqrt{s(s-a)}}{b+c}=\frac{2 b c}{b+c} \cos \frac{A}{2}
\end{array}\right. \\
\geq \frac{1}{8 s R} \cdot \sum \frac{\frac{b+c}{2} \cdot \cos \frac{A}{2} \cdot \frac{2 b c}{b+c} \cdot \cos \frac{A}{2} \cdot w_{a}}{s-a}=\frac{1}{8 s R} \cdot \sum \frac{b c \cdot \cos ^{2} \frac{A}{2} \cdot w_{a}}{s-a}= \\
=\frac{1}{8 R} \cdot \sum \frac{b c}{s(s-a)} \cdot \frac{s(s-a)}{b c}=\frac{1}{8 R} \cdot \sum w_{a} \geq \frac{1}{8 R} \sum h_{a}=\frac{1}{16 R^{2}} \cdot \sum a b= \\
=\frac{1}{16 R^{2}} \cdot\left(s^{2}+4 R r+r^{2}\right) \stackrel{\substack{R \geq 2 r \\
s \geq 3}}{\geq} \frac{1}{16 R^{2}} \cdot\left(27 r^{2}+8 r^{2}+r^{2}\right)=\frac{1}{16 R^{2}} \cdot 36 r^{2}=\frac{9 r^{2}}{4 R^{2}}
\end{gathered}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\boldsymbol{m}_{a} \geq \frac{b+c}{2} \cos \frac{A}{2}, \text { etc } \therefore \sum \frac{m_{a} h_{a}}{(b+c)^{2}} \geq \frac{2 S}{2} \sum\left(\frac{\cos \frac{A}{2}}{a(b+c)}\right)=S \sum\left(\frac{\cos \frac{A}{2}}{a 2 R(\sin B+\sin C)}\right)= \\
=s \sum\left(\frac{\cos \frac{A}{2}}{4 R a \sin \frac{B+C}{2} \cos \frac{B-C}{2}}\right)=\frac{S}{4 R} \sum\left(\frac{1}{a \cos \frac{B-C}{2}}\right) \Rightarrow \\
\Rightarrow \sum \frac{m_{a} h_{a}}{(b+c)^{2}} \stackrel{(a)}{\geq} \frac{s}{4 R} \sum\left(\frac{1}{a \cos \frac{B-C}{2}}\right) \therefore 0<B<\pi \text { and }-\pi<-C<0 \therefore-\frac{\pi}{2}<\frac{B-C}{2}<\frac{\pi}{2} \Rightarrow \\
\Rightarrow 0<\cos \frac{B-C}{2} \leq 1 . \text { Similarly, } 0<\cos \frac{C-A}{2} \leq 1 \text { and } 0<\cos \frac{A-B}{2} \leq 1 . \text { Using the last }
\end{gathered}
$$ three inequalities and (a), $\sum \frac{m_{a} h_{a}}{(b+c)^{2}} \geq \frac{s}{4 R}\left(\sum \frac{1}{a}\right)=\frac{r s\left(s^{2}+4 R r+r^{2}\right)}{4 R \cdot 4 R r s}=\frac{s^{2}+4 R r+r^{2}}{16 R^{2}} \geq \frac{9 r^{2}}{4 R^{2}} \Leftrightarrow$

$$
20 R r \stackrel{?}{\geq} 40 r^{2} \rightarrow \text { true (Euler) (Proved) }
$$

Solution 3 by M arian Ursarescu-Romania

In any $\triangle A B C$ we have $m_{a} \geq \frac{b^{2}+c^{2}}{4 R} \Rightarrow m_{a} \geq \frac{(b+c)^{2}}{8 R} \Rightarrow \frac{m_{a}}{(b+c)^{2}} \geq \frac{1}{8 R} \Rightarrow$ we must show this:

$$
\begin{equation*}
\frac{1}{8 R}\left(h_{a}+h_{b}+h_{c}\right) \geq \frac{9 r^{2}}{4 R^{2}} \Leftrightarrow h_{a}+h_{b}+h_{c} \geq \frac{18 r^{2}}{R} \tag{1}
\end{equation*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{equation*}
\text { But } h_{a}+h_{b}+h_{c}=\frac{s^{2}+r^{2}+4 R r}{2 R} \tag{2}
\end{equation*}
$$

From (1) + (2) we must show: $\frac{s^{2}+r^{2}+4 R r}{2 R} \geq \frac{18 r^{2}}{R} \Leftrightarrow s^{2}+r^{2}+4 R r \geq 3 r^{2} \Leftrightarrow$

$$
\begin{gather*}
\Leftrightarrow s^{2}+4 R r \geq 35 r^{2} \tag{3}\\
\text { But } \left.\begin{array}{c}
s^{2} \geq 2+r^{2} \\
R \geq 2 r
\end{array}\right\} \Rightarrow s^{2}+4 R r \geq 35 r^{2} \Rightarrow \text { (3) its true }
\end{gather*}
$$

856. In $\triangle A B C$ the following relationship holds:

$$
\sum \frac{a^{2} \sin A \sin C}{a^{2}+b^{2}} \geq \frac{2 r}{R}+\frac{1}{2} \cdot\left(\frac{r}{R}\right)^{2}
$$

Proposed by Marian Ursărescu - Romania
Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\begin{gather*}
L H S=\frac{1}{4 R^{2}} \sum \frac{a^{3} c}{a^{2}+b^{2}} \geq \frac{4 R r+r^{2}}{2 R^{2}} \\
\Leftrightarrow \sum \frac{a^{3} c}{a^{2}+b^{2}} \geq 8 R r+2 r^{2} \tag{1}
\end{gather*}
$$

Now, $\sum \frac{a^{3} c}{a^{2}+b^{2}}=\sum\left(\frac{a^{3} c}{a^{2}+b^{2}}-a c+a c\right)=\sum a c\left(\frac{a^{2}}{a^{2}+b^{2}}-1\right)+\sum a b=-\sum \frac{a c b^{2}}{a^{2}+b^{2}}+\sum a b$

$$
\begin{gather*}
\stackrel{A-G}{\geq}-\sum \frac{a c b^{2}}{2 a b}+\sum a b=-\frac{1}{2} \sum b c+\sum a b=\frac{1}{2} \sum a b \stackrel{?}{\geq} 8 R r+2 r^{2} \\
\Leftrightarrow s^{2}+4 R r+r^{2} \xrightarrow[?]{\geq} 16 R r+4 r^{2} \\
\Leftrightarrow s^{2} \stackrel{?}{\geq} 12 R r+3 r^{2} \text { (2) } \tag{2}
\end{gather*}
$$

$$
\begin{array}{r}
\text { Now, LHS of (2) } \stackrel{\text { Gerretsen }}{\geq} 16 R r-5 r^{2} \stackrel{?}{\geq} 12 R r+3 r^{2} \\
\Leftrightarrow 4 R r \xrightarrow[?]{\geq} 8 r^{2} \Leftrightarrow R \stackrel{?}{\geq} 2 r \rightarrow \text { true (Euler) } \Rightarrow(2) \text { is true (proved) }
\end{array}
$$

Solution 2 by Soumitra Mandal-Chandar Nagore-India

$$
\begin{gathered}
\sum_{c y c} \frac{a^{2} \sin A \sin C}{a^{2}+b^{2}}=\sum_{c y c} \sin A \sin C-\sum_{c y c} \frac{b^{2} \sin A \sin C}{a^{2}+b^{2}} \\
\stackrel{A M \geq G M}{\geq} \frac{1}{4 R^{2}} \sum_{c y c} a b-\frac{1}{2} \sum_{c y c} \frac{b}{a} \sin A \sin C=\frac{1}{4 R^{2}} \sum_{c y c} a b-\frac{1}{8 R^{2}} \sum_{c y c} a b
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$=\frac{a b+b c+c a}{8 R^{2}}$, we need to prove, $\frac{a b+b c+c a}{8 R^{2}} \geq \frac{2 r}{R}+\frac{1}{2}\left(\frac{r}{R}\right)^{2}$
$\Leftrightarrow a b+b c+c a \geq 16 R r+4 r^{2} \Leftrightarrow s^{2}+4 R r+r^{2} \geq 16 R r+4 r^{2}$
$\Leftrightarrow s^{2} \geq 12 R r+3 r^{2}$ again we know $s^{2} \geq 16 R r-5 r^{2}$ hence we need to show
$16 R r-5 r^{2} \geq 12 R r+3 r^{2} \Leftrightarrow 12 R r+3 r^{2} \Leftrightarrow 4 R r \geq 8 r^{2} \Leftrightarrow R \geq 2 r$ which is true

Hence proved

Solution 3 by Myagmarsuren Yadamsuren-Darkhan-Mongolia

$$
\begin{gathered}
s^{2} \geq 12 R r+3 r^{2} \text { (True) } \Leftrightarrow s^{2}+4 R r+r^{2} \geq 16 R r+4 r^{2} \Leftrightarrow \sum a b \geq 16 R r+4 r^{2} \\
\Leftrightarrow \sum a b \geq 8 R^{2}\left(\frac{2 r}{R}+\frac{1}{2}\left(\frac{r}{R}\right)^{2}\right) \Leftrightarrow \frac{\sum a b}{8 R^{2}} \geq \frac{2 r}{R}+\frac{1}{2}\left(\frac{r}{R}\right)^{2} \quad(*) \\
(*) \Rightarrow \frac{\sum a b}{8 R^{2}}=\frac{a b c}{4 R^{2}} \cdot \frac{\sum a b}{2 a b c}=\frac{s}{R} \cdot \sum \frac{1}{2 a}=\frac{s}{R} \cdot \sum\left(\frac{1}{a}-\frac{1}{2 a}\right)= \\
=\frac{S}{R} \cdot \sum\left(\frac{1}{a}-\frac{b}{2 a b}\right)^{M g \leq M a} \leq \frac{S}{R} \cdot \sum\left(\frac{1}{a}-\frac{b}{a^{2}+b^{2}}\right)=\frac{S}{R}\left(\sum\left(\frac{1}{b}-\frac{b}{a^{2}+b^{2}}\right)\right)= \\
=\frac{S}{R} \cdot \sum \frac{a^{2}}{b\left(a^{2}+b^{2}\right)}=\frac{2 R^{2} \sin A \sin B \sin C}{R} \cdot \sum \frac{a^{2}}{2 R \cdot \sin B\left(a^{2}+b^{2}\right)}=\sum \frac{a^{2} \sin A \sin C}{a^{2}+b^{2}} .
\end{gathered}
$$

857. In $\triangle A B C$ the following relationship holds:

$$
3\left(h_{a}-2 r\right) w_{a}+3\left(h_{b}-2 r\right) w_{b}+3\left(h_{c}-2 r\right) \geq r\left(2 \sum m_{a}+\sum w_{a}\right)
$$

Proposed by Bogdan Fustei - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\sum 3\left(h_{a}-2 r\right) w_{a}=\sum\left\{3\left(\frac{2 \Delta}{a}-\frac{2 \Delta}{s}\right) w_{a}\right\}=\sum\left\{32 r s\left(\frac{1}{a}-\frac{1}{s}\right) w_{a}\right\}= \\
=3 r\left\{\sum \frac{2(s-a)}{a} w_{a}\right\}=3 r\left(\sum \frac{b+c-a}{a} w_{a}\right)=2 r \sum \frac{b+c}{a} w_{a}-3 r \sum w_{a} \\
\geq r\left(2 \sum m_{a}+\sum w_{a}\right) \Leftrightarrow 3 \sum \frac{b+c}{a} w_{a} \xrightarrow{(1)} 4 \sum w_{a}+2 \sum m_{a}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\left.\begin{array}{c}
\text { Now, }\left(\sum m_{a}\right)^{2} \stackrel{(a)}{\leq} 4 s^{2}-16 R r+5 r^{2}(\text { X.G.Chu,X.Z.Yang }) \\
\left(\sum w_{a}\right)^{2} \stackrel{(b)}{\leq}(4 R+r)\left(\sum h_{a}\right)(\text { Bogdan Fustei }), \\
\sum\left(\frac{b+c}{a}\right) w_{a} \stackrel{(c)}{\geq} 2 s \sqrt{3}(\text { Bogdan Fustei) }
\end{array}\right\} \text { Now, } \begin{gathered}
2 \sum w_{a} \leq 2 \sum \sqrt{s(s-a)} \stackrel{c-B-s}{\leq} 2 \sqrt{3} \sqrt{s} \sqrt{s}=2 \sqrt{3} s \stackrel{b y(c)}{\leq} \sum\left(\frac{b+c}{a}\right) w_{a} \Rightarrow \\
\Rightarrow 2 \sum w_{a}{ }^{(i)} \leq \sum\left(\frac{b+c}{a}\right) w_{a}
\end{gathered}
$$

(i) \Rightarrow in order to prove (1), it suffices to prove: $2 \sum \frac{b+c}{a} w_{a} \geq 2 \sum w_{a}+2 \sum m_{a} \Leftrightarrow$

$$
\Leftrightarrow \sum \frac{b+c}{a} w_{a} \stackrel{(2)}{\geq} \sum w_{a}+\sum m_{a} \text {. Now, LHS of (2) } \stackrel{\stackrel{C B S}{(m)}}{\stackrel{\Sigma}{2} \sqrt{\left(\sum w_{a}\right)^{2}+\left(\sum m_{a}\right)^{2}}}
$$

$$
\stackrel{b y(a),(b)}{\leq} \sqrt{\frac{(4 R+r)\left(s^{2}+4 R r+r^{2}\right)}{2 R}+4 s^{2}-16 R r+5 r^{2}}=
$$

$$
=\sqrt{\frac{(4 R+r)\left(s^{2}+4 R r+r^{2}\right)+2 R\left(4 s^{2}-16 R r+5 r^{2}\right)}{R}}
$$

$$
\text { Again, LHS of (2) } \stackrel{b y(c)}{\leq} 2 s \sqrt{3}
$$

$(\mathrm{m}),(\mathrm{n}) \Rightarrow$ in order to prove (2), it suffices to prove:

$$
\begin{gathered}
2 s \sqrt{3} \geq \sqrt{\frac{(12 R+r) s^{2}+r(4 R+r)^{2}-2 R\left(16 R r-5 r^{2}\right)}{R}} \\
\Leftrightarrow 12 R s^{2} \geq 12 R s^{2}+r s^{2}+r(4 R+r)^{2}-2 R\left(16 R r-5 r^{2}\right) \Leftrightarrow \\
\Leftrightarrow r\left\{2 R(16 R-5 r)-(4 R+r)^{2}\right\} \geq r s^{2} \Leftrightarrow s^{2} \stackrel{(3)}{\leq} 16 R^{2}-18 R r-r^{2} \\
\text { Now, LHS of (3) } \stackrel{\text { Gerretsen }}{\leq} 4 R^{2}+4 R r+3 r^{2} \stackrel{?}{\leq} 16 R^{2}-18 R r-r^{2} \\
\Leftrightarrow 6 R^{2}-11 R r-2 r^{2} \xrightarrow[?]{\geq} 0 \Leftrightarrow(R-2 r)(6 R+r)^{2} \stackrel{?}{\geq} 0 \rightarrow \text { true } \because R \stackrel{\text { Euler }}{\geq} 2 r \\
\Rightarrow(3) \text { is true } \Rightarrow(2) \text { is true (Proved) }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

858. In $\triangle A B C$ the following relationship holds:

$$
\left(a+w_{a}\right)^{2}+\left(b+w_{b}\right)^{2}+\left(c+w_{c}\right)^{2} \leq(s+3 R)^{2}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution by Daniel Sitaru-Romania

$$
\begin{aligned}
& \sum\left(a+w_{a}\right)^{2}=\sum a^{2}+2 \sum a w_{a}+\sum w_{a}^{2} \leq \\
& \stackrel{\text { CBS }}{\sim} \sum a^{2}+2 \sqrt{\sum a^{2} \sum w_{a}^{2}}+\sum w_{a}^{2} \leq \sum a^{2}+2 \sqrt{\sum a^{2} \sum s(s-a)}+\sum s(s-a)= \\
& =2\left(s^{2}-r^{2}-4 R r\right)+2 s \sqrt{\sum a^{2}}+s^{2} \stackrel{L E I B N I Z}{\leftrightarrows} 2\left(s^{2}-r^{2}-4 R r\right)+2 s \sqrt{9 R^{2}}+s^{2}= \\
& \text { Gerretsen } \\
& =3 s^{2}-2 r^{2}-8 R r+6 s R \quad \underset{\leq}{2}+2\left(4 R^{2}+4 R r+3 r^{2}\right)-2 r^{2}-8 R r+6 s R= \\
& =s^{2}+8 R^{2}+4 r^{2}+6 s R \stackrel{\text { EULER }}{\leftrightarrows} s^{2}+8 R^{2}+4 \cdot \frac{R^{2}}{4}+6 s R=s^{2}+6 s R+9 R^{2}=(s+3 R)^{2}
\end{aligned}
$$

859. In $\triangle A B C$ the following relationship holds:

$$
\frac{s^{2}-r_{a}^{2}}{s^{2}+r_{a}^{2}}+\frac{s^{2}-r_{b}^{2}}{s^{2}+r_{b}^{2}}+\frac{s^{2}-r_{c}^{2}}{s^{2}+r_{c}^{2}} \geq \frac{3 r}{R}
$$

Proposed by Daniel Sitaru - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
\because r_{a} & =s \tan \frac{A}{2^{\prime}} \text { etc, }, \therefore \sum \frac{s^{2}-r r_{a}^{2}}{s^{2}+r_{a}^{2}}=\sum\left(\frac{s^{2}-s^{2} \tan \frac{A}{2}}{s^{2}+s^{2} \tan ^{2} \frac{A}{2}}\right)=\sum\left(\frac{1-\tan ^{2} \frac{A}{2}}{1+\tan ^{2} \frac{A}{2}}\right)=\sum\left(\frac{1-\tan ^{2} \frac{A}{2}}{\sec ^{2} \frac{A}{2}}\right)= \\
& =\sum\left(\cos ^{2} \frac{A}{2}-\sin ^{2} \frac{A}{2}\right)=\sum \cos A=\mathbf{1}+\frac{r}{R} \xrightarrow{\text { Euler }} \frac{2 r}{R}+\frac{r}{R}=\frac{3 r}{R} \text { (Proved) }
\end{aligned}
$$

860. If in $\triangle A B C, I$ - incenter then:

$$
\frac{m_{a}}{A I}+\frac{m_{b}}{B I}+\frac{m_{c}}{C I} \geq \frac{h_{a}+h_{b}+h_{c}}{2 r}
$$

Proposed by Bogdan Fustei-Romania

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& m_{a} \geq \frac{b+c}{2} \cos \frac{A}{2} \therefore \frac{m_{a}}{A I} \stackrel{(1)}{\geq} \frac{b+c}{2} \cos \frac{A}{2} \times \frac{\sin \frac{A}{2}}{r}=\frac{b+c}{4 r}(\sin A)=\frac{b+c}{4 r} \cdot \frac{a}{2 R}=\frac{a(b+c)}{8 R r} \\
& \text { Similarly, } \frac{m_{b}}{B I} \stackrel{(2)}{\geq} \frac{b(c+a)}{8 R r} \& \frac{m_{c}}{C I} \stackrel{(3)}{\geq} \frac{c(a+b)}{8 R r} \\
&(1)+(2)+(3) \Rightarrow L H S \geq \frac{2 \sum a b}{8 R r}=\frac{1}{2 r}\left(\frac{\sum a b}{2 R}\right)=\frac{\sum h_{a}}{2 r} ;\left(\because h_{a}=\frac{b c}{2 R}, \text { etc }\right) \text { (Proved) }
\end{aligned}
$$

861. In $\triangle A B C$ the following relationship holds:

$$
\begin{array}{r}
8 \cos (11 \pi-32 A) \cos (11 \pi-32 B) \cos (11 \pi-32 C) \leq 1 \\
\text { Proposed by Daniel Sitaru - Romania }
\end{array}
$$

Solution by Soumava Chakraborty-Kolkata-India
Given inequality $\Leftrightarrow \cos (11 \pi-32 A) \cos (11 \pi-32 B) \cos (11 \pi-32 A) \leq \frac{1}{8}$. Now

$$
\begin{gathered}
\because x \leq|x| \therefore \cos (11 \pi-32 A) \cos (11 \pi-32 B) \cos (11 \pi-32 A) \leq \\
\quad \leq|\cos (11 \pi-32 A) \cos (11 \pi-32 B) \cos (11 \pi-32 A)|= \\
=|(-\cos 32 A)(-\cos 32 B)(-\cos 32 C)|=|\cos 32 A||\cos 32 B||\cos 32 C| \stackrel{?}{\leq} \frac{1}{8} \\
\Leftrightarrow \ln (|\cos 32 A||\cos 32 B||\cos 32 C|) \stackrel{?}{\leq}-3 \ln 2 \Leftrightarrow \sum \ln |\cos 32 A| \stackrel{?}{\leq}-3 \ln 2 \\
\quad \text { Let } f(x)=\ln |\cos 32 x| \forall x \in(0, \pi) \because f^{\prime \prime}(x)=-1024 \sec ^{2}(32 x)<0
\end{gathered}
$$

$$
\therefore \boldsymbol{f}(\boldsymbol{x}) \text { is concave } \Rightarrow
$$

$$
\Rightarrow \sum \ln |\cos 32 A| \stackrel{\text { Jensen }}{\leq} 3 \ln \left|\cos \frac{32 \pi}{3}\right|=3 \ln \left|-\frac{1}{2}\right|=3 \ln \frac{1}{2}=-3 \ln 2 \Rightarrow
$$

$$
\Rightarrow \sum \ln |\cos 32 A| \leq-3 \ln 2 \Rightarrow(1) \text { is true (Proved) }
$$

862. In $\triangle A B C$ the following relationship holds:

$$
3 \sqrt{3} r \leq \frac{m_{a}}{\sqrt{r_{a}}}+\frac{m_{b}}{\sqrt{r_{b}}}+\frac{m_{c}}{\sqrt{r_{c}}} \leq \frac{3 \sqrt{3} R}{2 \sqrt{r}}
$$

Proposed by Mehmet Sahin-Ankara-Turkey

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 1 by M arian Ursarescu-Romania

$$
\begin{align*}
r_{a}= & \frac{S}{s-a} \Rightarrow \frac{m_{a} \sqrt{s-a}}{\sqrt{S}}+\frac{m_{b} \sqrt{s-b}}{\sqrt{S}}+\frac{m_{c} \sqrt{s-c}}{\sqrt{S}} \geq 3 \sqrt{3} r \Leftrightarrow \\
& \Leftrightarrow m_{a} \sqrt{s-a}+m_{b} \sqrt{s-b}+m_{c} \sqrt{s-c} \geq 3 \sqrt{3 s} \cdot r \tag{1}
\end{align*}
$$

But in any $\triangle A B C$ we have: $m_{a} \geq \frac{b+c}{2} \cdot \cos \frac{A}{2} \Rightarrow$

$$
\begin{equation*}
m_{a} \geq \sqrt{b c} \cdot \sqrt{\frac{s(s-a)}{b c}} \Rightarrow m_{a} \geq \sqrt{s(s-a)} \tag{2}
\end{equation*}
$$

From (1)+ (2) we must show:

$$
\sqrt{s}(s-a+s-b+s-c) \geq 3 \sqrt{3 s} r \Leftrightarrow s \geq 3 \sqrt{3} r \quad \text { (true) }
$$

Now, let $a \leq b \leq c \Rightarrow m_{a} \geq m_{b} \geq m_{c}$ and $r_{a} \leq r_{b} \leq r_{c}$. From Cebyshev inequality \Rightarrow

$$
\begin{gather*}
\frac{m_{a}}{\sqrt{r_{a}}}+\frac{m_{b}}{\sqrt{r_{b}}}+\frac{m_{c}}{\sqrt{r_{c}}} \leq \frac{1}{3}\left(m_{a}+m_{b}+m_{c}\right)\left(\frac{1}{\sqrt{r_{a}}}+\frac{1}{\sqrt{r_{b}}}+\frac{1}{\sqrt{r_{c}}}\right) \Rightarrow \text { we must show this: } \\
\quad\left(m_{a}+m_{b}+m_{c}\right)\left(\frac{1}{\sqrt{r_{a}}}+\frac{1}{\sqrt{r_{b}}}+\frac{1}{\sqrt{r_{c}}}\right) \leq \frac{9 \sqrt{3} R}{2 \sqrt{r}} \tag{3}
\end{gather*}
$$

But from Cauchy's inequality \Rightarrow

$$
\begin{gather*}
m_{a}+m_{b}+m_{c} \leq \sqrt{3\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)} \leq \sqrt{\frac{9}{4}\left(a^{2}+b^{2}+c^{2}\right)} \Rightarrow \\
m_{a}+m_{b}+m_{c} \leq \frac{3}{2} \sqrt{a^{2}+b^{2}+c^{2}} \leq \frac{3}{2} \sqrt{9 R^{2}}=\frac{9}{2} R \quad \text { (4) } \tag{4}\\
\frac{1}{\sqrt{r_{a}}}+\frac{1}{\sqrt{r_{b}}}+\frac{1}{\sqrt{r_{c}}} \leq \sqrt{3\left(\frac{1}{r_{a}}+\frac{1}{r_{b}}+\frac{1}{r_{c}}\right)}=\frac{\sqrt{3}}{\sqrt{r}} \tag{5}
\end{gather*}
$$

$$
\text { From }(4)+(5) \Rightarrow(3) \text { its true. }
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\sum \frac{m_{a}}{\sqrt{r_{a}}} \stackrel{A-G}{\geq} 3^{\frac{3}{\sqrt{\Pi m_{a}}}} \stackrel{m_{a} \geq \sqrt{s(s-a)}}{\geq} 3^{\frac{3}{\frac{s r s}{\sqrt{r s^{2}}}}=3 \sqrt[3]{s \sqrt{r}} \stackrel{s \geq 3 \sqrt{3} r}{\geq} 3 \sqrt[3]{3 \sqrt{3} r \sqrt{r}}=3 \sqrt{3} \sqrt{r}=3 \sqrt{3 r}} \\
\text { Also, } \sum \frac{m_{a}}{\sqrt{r_{a}}} \stackrel{C-B-S}{\leq} \sqrt{\sum m_{a}^{2}} \sqrt{\sum \frac{1}{r_{a}}}=\sqrt{\frac{3}{4} \sum a^{2}\left(\frac{1}{r}\right)} \stackrel{\text { Leibnitz }}{\leq} \sqrt{\frac{27 R^{2}}{4 r}}=\frac{3 \sqrt{3} R}{2 \sqrt{r}} \quad \text { (Done) }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

863.

Prove that:

$$
\begin{aligned}
& a \cdot R A \cdot Q A+b \cdot R B \cdot Q B+c \cdot R C \cdot Q C \geq 24 \sqrt{3} r^{3} \\
& \text { Proposed by Daniel Sitaru - Romania }
\end{aligned}
$$

Solution by Marian Ursărescu - Romania

For sine law we have: $\frac{A R}{\sin \frac{B}{3}}=\frac{A B}{\sin \left(\frac{A+B}{3}\right)} \Rightarrow A R=\frac{c \sin \frac{B}{3}}{\sin \left(\frac{-C}{3}\right)}, \operatorname{similarly}, A Q=\frac{b \cdot \sin \frac{C}{3}}{\sin \left(\frac{\pi-B}{3}\right)}$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

From (1) we must show this: $a b c \sum \frac{\sin \frac{B}{3} \cdot \sin \frac{C}{3}}{\sin \left(\frac{\pi-B}{3}\right) \cdot \sin \left(\frac{\pi-C}{3}\right)} \geq 24 \sqrt{3} r^{3}$
But $a b c \geq 24 \sqrt{3} r^{3}$ (3). From (2)+ (3) we must show: $\sum \frac{\sin \frac{B}{3} \cdot \sin \frac{C}{3}}{\sin \left(\frac{\pi-B}{3}\right) \cdot \sin \left(\frac{\pi-C}{3}\right)} \geq 1$

$$
\text { But } \sum \frac{\sin \frac{B}{3} \cdot \sin \frac{C}{3}}{\sin \left(\frac{\pi-B}{3}\right) \cdot \sin \left(\frac{\pi-C}{3}\right)} \geq 3 \sqrt[3]{\frac{\sin ^{2} \frac{A}{3} \cdot \sin ^{2} \frac{B}{3} \cdot \sin ^{2} \frac{C}{3}}{\sin ^{2}\left(\frac{\pi-A}{3}\right) \cdot \sin ^{2}\left(\frac{\pi-B}{3}\right) \cdot \sin ^{2}\left(\frac{\pi-C}{3}\right)}}
$$

From (4)+ (5) we must show: $\frac{\sin _{3}^{A} \cdot \sin \frac{B}{3} \cdot \sin \frac{C}{3}}{\sin \left(\frac{\pi-A}{3}\right) \cdot \sin \left(\frac{\pi-B}{3}\right) \cdot \sin \left(\frac{\pi-C}{3}\right)} \geq \frac{1}{3 \sqrt{3}}$
But $\frac{\sin \frac{A}{3}}{\sin \left(\frac{\pi-A}{3}\right)} \geq \frac{1}{3}$ because $\Leftrightarrow \sqrt{3} \sin \frac{A}{3} \geq \sin \left(\frac{\pi}{3}-\frac{A}{3}\right) \Leftrightarrow \sqrt{3} \sin \frac{A}{3} \geq \frac{\sqrt{3}}{2} \cos \frac{A}{3}-\frac{1}{2} \sin \frac{A}{3} \Leftrightarrow$

$$
\Leftrightarrow \sin \left(\frac{\pi+A}{3}\right) \geq \mathbf{0} \text { true } \Rightarrow \text { (6) its true. }
$$

864. In $\triangle A B C$ the following relationship holds:

$$
2\left(\sqrt{m_{a} h_{a}}+\sqrt{m_{b} h_{b}}+\sqrt{m_{c} h_{c}}\right) \leq R\left(6+\frac{h_{a}}{r_{a}}+\frac{h_{b}}{r_{b}}+\frac{h_{c}}{r_{c}}\right)
$$

Proposed by Bogdan Fustei - Romania

Solution 1 by M yagmarsuren Yadamsuren-Darkhan-M ongolia

$$
\begin{aligned}
& \text { 1) } 2 \sum \sqrt{m_{a} \cdot h_{a}} \stackrel{h_{a} \leq m_{a}}{\leq} 2 \sum m_{a} \leq 2(4 R+r) \text { (1) LHS } \\
& \text { 2) } 2(4 R+r)=2(5 R+r-R) \stackrel{\text { Euler }}{\leq} 2(5+r-2 r)=2(5 R-r)= \\
& =\frac{4 r(5 R-r)}{2 r}=\frac{20 R r-4 r^{2}}{2 r}=\frac{16 R r-5 r^{2}+4 R r+r^{2}}{2 r} \underset{\leq}{\text { GERRETSEN }} \frac{s^{2}+4 R r+r^{2}}{2 r}= \\
& =\frac{\sum a b}{2 r}=2 R s \cdot \frac{\sum a b}{4 s R r}=2 R s \cdot \frac{\sum a b}{a b c}=R\left(2 \sum \frac{s}{a}\right)=R\left(6+2 \sum \frac{s-a}{a}\right)= \\
& =R\left(6+2\left(\frac{h_{a}}{r_{a}}+\frac{h_{b}}{r_{b}}+\frac{h_{c}}{r_{c}}\right)\right) \\
& \text { 1) } 2 \cdot \sum_{\Delta} \sqrt{m_{a} h_{a}} \leq 2 \sum m_{a} \leq 2 \sum r_{a} \text { (1) } \\
& \text { 2) } R\left(6+\sum \frac{h_{a}}{r_{a}}\right)=\frac{\sum a b}{2 r} \text { (2) }
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{align*}
& \text { (1); (2) } \Rightarrow 2 \sum r_{a} \leq \frac{\sum a b}{2 r}(K) \quad \text { (ASSURE) } \\
& : \sum a^{2} \geq \sum a b ;-\sum a^{2} \leq-\sum a b \text { (TRUE) } \\
& -\sum a^{2}+2 \sum a b \leq \sum a b \tag{*}\\
& -\sum a^{2}+2 \sum a b=4 \sum(s-a)(s-b) \tag{**}\\
& { }^{(*)} ;{ }^{(* *)} 4 \sum(s-a)(s-b) \leq \Sigma a b \\
& 4 \sum \frac{\Delta^{2}}{s(s-c)} \leq \sum a b \\
& \frac{4 \Delta}{s} \cdot \sum \frac{\Delta}{s-c} \leq \sum a b \Rightarrow 2 \sum r_{c} \leq \frac{\sum a b}{2 r} \text { (K) }
\end{align*}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& R H S=R\left\{6+\sum\left(\frac{2 \Delta}{a} \times \frac{s-a}{\Delta}\right)\right\}=R\left(6+2 \sum \frac{s-a}{a}\right)=R\left(6+2 s \sum \frac{1}{a}-6\right)= \\
& =R \cdot \frac{2 s \sum a b}{4 R r s} \stackrel{(1)}{=} \frac{\sum a b}{2 r} \\
& L H S \stackrel{C B S}{\leq} 2 \sqrt{\sum m_{a}} \sqrt{\sum h_{a}} \stackrel{?}{\leq} R H S \stackrel{(1)}{\stackrel{\sum a b}{2 r}} \Leftrightarrow 4\left(\sum m_{a}\right)\left(\frac{\sum a b}{2 R}\right) \stackrel{?}{\leq} \frac{\left(\sum a b\right)^{2}}{4 r^{2}} \Leftrightarrow \\
& \Leftrightarrow R \sum a b \underset{(a)}{\sum} 8 r^{2}\left(\sum m_{a}\right) \text {. Now, RHS of (a) } \leq 8 r^{2}(4 R+r) \stackrel{?}{\leq} R\left(s^{2}+4 R r+r^{2}\right) \\
& \Leftrightarrow R s^{2}+\left(R r-8 r^{2}\right)(4 R+r) \underset{(\bar{b})}{\sum_{0}} \mathbf{0} \text {. Now, LHS of (b) } \stackrel{\text { Gerretsen }}{\geq} R\left(16 R r-5 r^{2}\right)+ \\
& +\left(R r-8 r^{2}\right)(4 R+r) \xrightarrow[\geqq]{\geq} 0 \Leftrightarrow 5 r^{2}-9 R r-2 r^{2} \geq 2 \Leftrightarrow(5 R+r)(R-2 r) \xrightarrow[\geq]{\geq} 0 \\
& \rightarrow \text { true } \because R \stackrel{\text { Euler }}{\geq} 2 r \text { (Proved) }
\end{aligned}
$$

865. In $\triangle A B C$ the following relationship holds:

$$
\frac{h_{a}}{m_{a}}+\frac{h_{b}}{m_{b}}+\frac{h_{c}}{m_{c}} \leq 2\left(\frac{h_{b} h_{c}}{h_{b}^{2}+h_{c}^{2}}+\frac{h_{c} h_{a}}{h_{c}^{2}+h_{a}^{2}}+\frac{h_{a} h_{b}}{h_{a}^{2}+h_{b}^{2}}\right)
$$

Proposed by Bogdan Fustei-Romania

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Solution by Daniel Sitaru-Romania

$$
\begin{aligned}
& \sum \frac{h_{a}}{m_{a}} \stackrel{\text { TERESHIN }}{\leftrightarrows} \sum \frac{h_{a}}{\frac{b^{2}+c^{2}}{4 R}}=8 R S \sum \frac{\frac{1}{a}}{b^{2}+c^{2}}=2 a b c \sum \frac{1}{a\left(b^{2}+c^{2}\right)}= \\
& =2 \sum \frac{b c}{b^{2}+c^{2}}=2 \sum \frac{\frac{2 S}{b} \cdot \frac{2 S}{c}}{\frac{4 S^{2}}{b^{2}}+\frac{4 S^{2}}{c^{2}}}=2\left(\frac{h_{b} h_{c}}{h_{b}^{2}+h_{c}^{2}}+\frac{h_{c} h_{a}}{h_{c}^{2}+h_{a}^{2}}+\frac{h_{a} h_{b}}{h_{a}^{2}+h_{b}^{2}}\right)
\end{aligned}
$$

866. In $\Delta A B C, \Delta A^{\prime} B^{\prime} C^{\prime}$ the following relationship holds:

$$
\sum \frac{c \sqrt{a^{\prime} b^{\prime}}+c^{\prime} \sqrt{a b}}{(a+b)\left(a^{\prime}+b^{\prime}\right)}<2
$$

Proposed by Daniel Sitaru - Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
L H S=\sum \frac{c \sqrt{a^{\prime} b^{\prime}}}{(a+b)\left(a^{\prime}+b^{\prime}\right)}+\sum \frac{c^{\prime} \sqrt{a b}}{(a+b)\left(a^{\prime}+b^{\prime}\right)} \stackrel{A-G}{\stackrel{1}{1})} \\
\geq \sum \frac{c \sqrt{a^{\prime} b^{\prime}}}{(a+b)\left(2 \sqrt{a^{\prime} b^{\prime}}\right)}+\sum \frac{c^{\prime} \sqrt{a b}}{(2 \sqrt{a b})\left(a^{\prime}+b^{\prime}\right)}=\frac{1}{2} \sum \frac{c}{a+b}+\frac{1}{2} \sum \frac{c^{\prime}}{a^{\prime}+b^{\prime}}
\end{gathered}
$$

$$
\text { Now, } \frac{1}{2} \sum \frac{c}{a+b}=\frac{1}{2} \cdot \frac{\sum c(b+c)(c+a)}{(a+b)(b+c)(c+a)}=\frac{1}{2} \cdot \frac{\left(\sum a b\right)\left(\sum a\right)+\sum a^{3}}{2 a b c+\sum a b(2 s-c)}=\frac{1}{2} \cdot \frac{2 s \sum a b+3 a b c+2 s\left(\sum a^{2}-\sum a b\right)}{2 s\left(s^{2}+4 R r+r^{2}\right)}=
$$

$$
=\frac{1}{2} \cdot \frac{2 s\left(2 s^{2}-8 R r-2 r^{2}\right)+12 R r s}{2 s\left(s^{2}+2 R r+r^{2}\right)}=\frac{1}{2} \cdot \frac{2 s^{2}-2 R r-2 r^{2}}{s^{2}+2 R r+r^{2}}=\frac{s^{2}-R r-r^{2}}{s^{2}+2 R r+r^{2}}=
$$

$$
=\frac{s^{2}+2 R r+r^{2}-3 R r-2 r^{2}}{s^{2}+2 R r+r^{2}}=1-\frac{3 R r+2 r^{2}}{s^{2}+2 R r+r^{2}}<1 \Rightarrow \frac{1}{2} \sum \frac{c}{a+b}{ }^{(2)}<1
$$

$$
\text { Similarly, } \frac{1}{2} \sum \frac{c^{\prime}}{a^{\prime}+b^{\prime}}<\mathbf{1 3}^{(3)} \mathbf{1 ;} \text { (1), (2), (3) } \Rightarrow L H S<2 \text { (Proved) }
$$

867. If in $\triangle A B C, O$ - circumcenter, I - incenter then:

$$
\sqrt{m_{a}^{2}-w_{a}^{2}}+\sqrt{m_{b}^{2}-w_{b}^{2}}+\sqrt{m_{c}^{2}-w_{c}^{2}} \leq 2 \sqrt{3} \cdot O I
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Proposed by Rovsen Pirguliyev-Sumgait-Azerbaidian
Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \sum_{\Delta} \sqrt{\frac{2\left(b^{2}+c^{2}\right)-a^{2}}{4}-\frac{b c\left((b+c)^{2}-a^{2}\right)}{(b+c)^{2}}}=\sum_{\Delta} \sqrt{\frac{b^{2}+c^{2}}{2}-\frac{a^{2}}{4}-b c+\frac{a^{2} \cdot b c}{(b+c)^{2}}}{ }^{M g \leq M_{a}} \leq \\
& \leq \sum_{\Delta} \sqrt{\frac{b^{2}+c^{2}}{2}-\frac{a^{2}}{4}-b c+\frac{a^{2}(b+c)^{2}}{4(b+c)^{2}}}=\sum_{\Delta} \sqrt{\frac{b^{2}+c^{2}}{2}-b c-\frac{a^{2}}{4}+\frac{a^{2}}{4}} \stackrel{C B S}{\leq} \\
& \quad \leq \sqrt{3\left(\sum a^{2}-\sum a b\right)}=\sqrt{3\left(2 s^{2}-8 R r-2 r^{2}-s^{2}-4 R r-r^{2}\right)}= \\
& =\sqrt{3\left(s^{2}-12 R r-3 r^{2}\right)} \stackrel{\text { GERRETSEN }}{\leq} \sqrt{3\left(4 R^{2}-8 R r\right)}=2 \sqrt{3} \sqrt{R(R-2 r)}=2 \sqrt{3} \cdot O I
\end{aligned}
$$

Solution 2 by Myagmarsuren Yadamsuren-Darkhan-Mongolia

$$
\begin{aligned}
& \sqrt{m_{a}^{2}-w_{a}^{2}}+\sqrt{m_{b}^{2}-w_{b}^{2}}+\sqrt{m_{c}^{2}-w_{c}^{2}} \stackrel{(i)}{\leq} 2 \sqrt{3} O I \\
& m_{a}^{2}-w_{a}^{2}=\frac{2 b^{2}+2 c^{2}-a^{2}}{4}-\frac{4 b^{2} c^{2}}{(b+c)^{2}} \cdot \frac{s(s-a)}{b c}=\frac{2 b^{2}+2 c^{2}-a^{2}}{4}- \\
& -\frac{b c(b+c+a)(b+c-a)}{(b+c)^{2}}=\frac{2 b^{2}+2 c^{2}-a^{2}}{4}-\frac{b c\left\{(b+c)^{2}-a^{2}\right\}}{(b+c)^{2}}=\frac{2 b^{2}+2 c^{2}-a^{2}}{4}- \\
& -b c+\frac{a^{2} b c}{(b+c)^{2}}=\frac{2(b-c)^{2}-a^{2}}{4}+\frac{a^{2} b c}{(b+c)^{2}}=\frac{(b-c)^{2}}{2}-a^{2}\left\{\frac{1}{4}-\frac{b c}{(b+c)^{2}}\right\}= \\
& =\frac{(b-c)^{2}}{2}-\frac{a^{2}}{4(b+c)^{2}}\left\{(b+c)^{2}-4 b c\right\}=\frac{(b-c)^{2}}{2}=\frac{a^{2}(b-c)^{2}}{4(b+c)^{2}} \stackrel{(1)}{\leq} \frac{(b-c)^{2}}{2} \\
& \left(\because \frac{a^{2}(b-c)^{2}}{4(b+c)^{2}} \geq 0\right) \text {. Similarly, } m_{b}^{2}-w_{b}^{2} \stackrel{(2)}{\leq} \frac{(c-a)^{2}}{2} \& m_{c}^{2}-w_{c}^{2} \stackrel{(3)}{\leq} \frac{(a-b)^{2}}{2} \\
& \text { (1) }+ \text { (2) }+ \text { (3) } \Rightarrow \sum\left(m_{a}^{2}-w_{a}^{2}\right) \stackrel{(a)}{\leq} \frac{\sum(a-b)^{2}}{2}=\sum a^{2}-\sum a b \text {. Now, LHS of (i) } \stackrel{C B S}{\leq} \\
& \leq \sqrt{3} \sqrt{\sum\left(m_{a}^{2}-w_{a}^{2}\right)} \stackrel{b y(a)}{\leq} \sqrt{3} \sqrt{\sum a^{2}-\sum a b} \stackrel{(i)}{\leq} 2 \sqrt{3} O I=2 \sqrt{3} \sqrt{R(R-2 r)} \Leftrightarrow \\
& \Leftrightarrow s^{2}-12 R r-3 r^{2} \stackrel{(i)}{\leq} 4 R(R-2 r) \Leftrightarrow s^{2} \stackrel{(i)}{\leq} 4 R^{2}+4 R r+3 r^{2} \rightarrow \text { true }
\end{aligned}
$$

(Gerretsen) (Proved)

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

868. In $\triangle A B C$ the following relationship holds:

$$
\sum m_{a} r_{a} \sqrt{r_{b}+r_{c}} \geq \frac{s \sqrt{2 r}\left(h_{a}+h_{b}+h_{c}\right)\left(r_{a}+r_{b}+r_{c}\right)}{m_{a}+m_{b}+m_{c}}
$$

Proposed by Bogdan Fustei - Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\text { By Bogdan Fustei, } \frac{b+c}{2} \xrightarrow{(1)} \sqrt{2 r\left(r_{b}+r_{c}\right)} .
$$

$$
\begin{aligned}
& \text { Proof of (1): } 2 r\left(r_{b}+r_{c}\right)=2 r s\left(\frac{\sin \frac{B}{2}}{\cos \frac{B}{2}}+\frac{\sin \frac{C}{2}}{\cos \frac{C}{2}}\right)=2 r s \frac{\cos ^{2} \frac{A}{2}}{\pi \cos \frac{A}{2}} \stackrel{(a)}{=} 8 \operatorname{Rr} \cos ^{2} \frac{A}{2} \text {. } \\
& \text { Using (a), (1) } \Leftrightarrow \\
& \Leftrightarrow \frac{(b+c)^{2}}{4} \geq 8 R r \cos ^{2} \frac{A}{2} \Leftrightarrow \frac{(b+c)^{2}}{4} \geq 8 \frac{a b c}{4 \Delta} \cdot \frac{\Delta}{s} \cdot \frac{s(s-a)}{b c}=2 a(s-a)=a(b+c-a) \\
& \Leftrightarrow(b+c-2 a)^{2} \geq 0 \rightarrow \text { true } \Rightarrow(1) \text { is true. } \\
& \because m_{a} \geq \frac{b+c}{2} \cos \frac{A}{2}, \text { etc, } \therefore \sum m_{a} \stackrel{b y(1)}{\geq} \sum \sqrt{2 r\left(r_{b}+r_{c}\right)} \cos \frac{A}{2} \stackrel{b y(a)}{=} \sum \sqrt{8 R r \cos ^{2} \frac{A}{2}} \cos \frac{A}{2}= \\
& =\sum \sqrt{2 R r}(1+\cos A)=\sqrt{2 R r}\left(3+1+\frac{r}{R}\right)=\sqrt{2 R r}\left(\frac{4 R+r}{R}\right) \Rightarrow \sum m_{a} \stackrel{(2)}{\geq} \sqrt{\frac{2 r}{R}}\left(\sum r_{a}\right) \\
& \sum m_{a} r_{a} \sqrt{r_{b}+r_{c}} m_{a}=\frac{b+c}{2} \cos \frac{A}{2}, e t c \quad \sum \frac{b+c}{2} \cdot s \tan \frac{A}{2} \sqrt{4 R \cos ^{2} \frac{A}{2}}= \\
& =\sqrt{R} s \sum \frac{(b+c)}{2} \cdot \frac{a}{2 R}=\sqrt{R} s \frac{2 \sum a b}{4 R}=\sqrt{R} S\left(\frac{\sum a b}{2 R}\right)=\sqrt{R} S\left(\sum h_{a}\right)\left(\because \frac{b c}{2 R}=h_{a}, e t c\right) \\
& \Rightarrow \sum m_{a} r_{a} \sqrt{r_{b}+r_{c}} \stackrel{(3)}{\geq} s \sqrt{R}\left(\sum h_{a}\right) \\
& \text { (2), (3) } \Rightarrow\left(\sum m_{a} r_{a} \sqrt{r_{b}+r_{c}}\right)\left(\sum m_{a}\right) \geq s \sqrt{2 r}\left(\sum h_{a}\right)\left(\sum r_{a}\right) \Rightarrow \\
& \sum m_{a} r_{a} \sqrt{r_{b}+r_{c}} \geq \frac{s \sqrt{2 r}\left(\sum h_{a}\right)\left(\sum r_{a}\right)}{\sum m_{a}} \text { (Proved) }
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

869. In $\triangle A B C$ the following relationship holds:

$$
\frac{s^{2} r}{m_{a} m_{b} m_{c}} \leq \frac{R}{2 r}
$$

Proposed by Seyran Ibrahimov-M aasili-Azerbaijan
Solution by Daniel Sitaru-Romania

$$
\begin{gathered}
m_{a} \geq \sqrt{s(s-a)} \rightarrow \prod m_{a} \geq \prod \sqrt{s(s-a)}=s S=s^{2} r \\
\frac{1}{m_{a} m_{b} m_{c}} \leq \frac{1}{s^{2} r} \rightarrow \frac{s^{2} r}{m_{a} m_{b} m_{c}} \leq \frac{s^{2} r}{s^{2} r}=1 \leq \frac{R}{2 r} \leftrightarrow R \stackrel{E L L E R}{\geqq} 2 r
\end{gathered}
$$

870. In $\triangle A B C$ the following relationship holds:

$$
\sum \frac{\left(r_{a}+r_{b}\right)\left(r_{a}+r_{c}\right)}{a} \geq \frac{a^{3}+b^{3}+c^{3}}{a b+b c+c a}
$$

Proposed by Adil Abdullayev-Baku-Azerbaidian
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \sum a^{3}=3 a b c+2 s\left(\sum a^{2}-\sum a b\right)=12 R r s+2 s\left(s^{2}-12 R r-3 r^{2}\right) \stackrel{(1)}{=} \\
& =2 s\left(s^{2}-6 R r-3 r^{2}\right) \\
& \sum \frac{\left(r_{a}+r_{b}\right)\left(r_{a}+r_{c}\right)}{a}=\sum \frac{\left(\frac{\Delta}{s-a}+\frac{\Delta}{s-b}\right)\left(\frac{\Delta}{s-a}+\frac{\Delta}{s-c}\right)}{a}= \\
& =\Delta^{2} \sum \frac{b c}{a(s-a)^{2}(s-b)(s-c)}=\frac{r^{2} s^{2}}{r^{2} s} \sum \frac{b c}{a(s-a)}=\frac{s}{4 R r s} \sum \frac{b^{2} c^{2}}{s-a} \\
& \stackrel{\text { Bergstrom }}{\geq} \frac{\left(\sum a b\right)^{2}}{4 \operatorname{Rr} \sum(s-a)}=\frac{\left(\sum a b\right)^{2}}{4 R r s} \stackrel{\sum a^{3}}{\sum a b} \Leftrightarrow \\
& \Leftrightarrow\left(s^{2}+r(4 R+r)\right)^{2} \stackrel{?}{\geq} 8 \operatorname{Rrs}^{2}\left(s^{2}-6 R r-3 r^{2}\right) \text { (using (1)) } \\
& \Leftrightarrow s^{6}+r^{3}(4 R+r)^{3}+3 s^{4} r(4 R+r)+3 s^{2} r^{2}(4 R+r)^{2} \stackrel{?}{\geq} 8 R r s^{2}\left(s^{2}-6 R r-3 r^{2}\right) \\
& \Leftrightarrow s^{6}+3 s^{4} r(4 R+r)+r^{3}(4 R+r)^{3} \stackrel{?}{\geq} s^{2} r\left(8 R\left(s^{2}-6 R r-3 r^{2}\right)-3 r(4 R+r)^{2}\right)
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
& \Leftrightarrow s^{6}+3 s^{4} r(4 R+r)-8 R r s^{4}+r^{3}(4 R+r)^{3}+s^{2} r\left(8 R\left(6 R r+3 r^{2}\right)+3 r(4 R+r)^{2}\right) \stackrel{?}{\geq} 0 \\
& \Leftrightarrow s^{6}+s^{4}\left(4 R r+3 r^{2}\right)+r^{3}(4 R+r)^{3}+s^{2} r\left(8 R\left(6 R r+3 r^{2}\right)+3 r(4 R+r)^{2}\right) \underset{(2)}{?} 0
\end{aligned}
$$

Now, LHS of (2) $\stackrel{\text { Gerretsen }}{\geq} s^{4}\left(20 R r-2 r^{2}\right)+r^{3}(4 R+r)^{3}+$

$$
+s^{2} r\left(8 R\left(6 R r+3 r^{2}\right)+3 r(4 R+r)^{2}\right) \stackrel{?}{\geq} 0
$$

$$
\Leftrightarrow s^{4}(20 R-2 r)+r^{2}(4 R+r)^{3}+s^{2}\left(8 R\left(6 R r+3 r^{2}\right)+3 r(4 R+r)^{2}\right) \sum_{(3)}^{?} 0
$$

Now, LHS of (3) $\stackrel{\text { Gerretsen }}{\geq} s^{2}\left(16 R r-5 r^{2}\right)(20 R-2 r)+r^{2}(4 R+r)^{3}+$ $+s^{2}\left(8 R\left(6 R r+3 r^{2}\right)+3 r(4 R+r)^{2}\right) \stackrel{?}{\geq} 0 \Leftrightarrow s^{2}\left(416 R-84 R r+13 r^{2}\right)+r(4 R+r)^{3} \underset{(4)}{?} 0$ Now, LHS of (4) $\stackrel{\text { Gerretsen }}{\geq}\left(16 R r-5 r^{2}\right)\left(416 R^{2}-84 R r+13 r^{2}\right)+r(4 R+r)^{3} \stackrel{?}{\geq} 0$

$$
\begin{gathered}
\Leftrightarrow 420 t^{3}-211 t^{2}+40 t-4 \stackrel{?}{\geq} 0 \Leftrightarrow(t-2)\left(420 t^{2}+629 t+1298\right)+2592 \stackrel{?}{\geq}_{\geq}^{0} 0 \\
\rightarrow \text { true } \because t \geq 2 \text { (Euler) (Proved) }
\end{gathered}
$$

871. In $\triangle A B C$ the following relationship holds:

$$
\left(\frac{1}{b}+\frac{1}{c}\right) \frac{h_{a}}{r_{a}}+\left(\frac{1}{c}+\frac{1}{a}\right) \frac{h_{b}}{r_{b}}+\left(\frac{1}{a}+\frac{1}{b}\right) \frac{h_{c}}{r_{c}} \leq \frac{9 R}{S}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution by Daniel Sitaru-Romania

$$
\begin{aligned}
& \sum\left(\frac{1}{b}+\frac{1}{c}\right) \frac{h_{a}}{r_{a}}=\sum \frac{b+c}{b c} \cdot \frac{\frac{2 S}{a}}{\frac{S}{s-a}}=2 \sum \frac{(b+c)(s-a)}{a b c}=\frac{2}{a b c} \sum(2 s-a)(s-a)= \\
& =\frac{2}{4 R S} \sum\left(2 s^{2}-3 a s+a^{2}\right)=\frac{1}{2 R S}\left(6 s^{2}-6 s^{2}+\sum a^{2}\right)=\frac{1}{2 R S} \cdot 2\left(s^{2}-r^{2}-4 R r\right) \leq \\
& \underset{\text { GERRETSEN }}{ } \quad \frac{1}{\leq}\left(4 R^{2}+4 R r+3 r^{2}-r^{2}-4 R r\right)=\frac{4 R^{2}+2 r^{2}}{R S} \stackrel{E U L E R}{\operatorname{RS}} \frac{4 R^{2}+2\left(\frac{R}{2}\right)^{2}}{R S}=\frac{9 R}{S}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

872. In $\triangle A B C$ the following relationship holds:

$$
\begin{aligned}
m_{a} \sqrt{\frac{r_{a}}{h_{a}}}+m_{b} \sqrt{\frac{r_{b}}{h_{b}}}+m_{c} \sqrt{\frac{r_{c}}{h_{c}}} \geq \frac{\left(h_{a}+h_{b}+h_{c}\right)\left(r_{a}+r_{b}+r_{c}\right)}{m_{a}+m_{b}+m_{c}} \\
\text { Proposed by Bogdan Fustei - Romania }
\end{aligned}
$$

Solution by Soumava Chakraborty-Kolkata-India
By Bogdan Fustei, $\frac{b+c}{2} \stackrel{(1)}{\geq} \sqrt{2 r\left(r_{b}+r_{c}\right)}$. Proof of (1): $2 r\left(r_{b}+r_{c}\right)=2 r s\left(\frac{\sin \frac{B}{2}}{\cos _{\frac{5}{2}}^{+}} \frac{\sin \frac{c}{2}}{\cos \frac{c}{2}}\right)=$

$$
\begin{gathered}
=2 r s \frac{\cos ^{2} \frac{A}{2}}{\Pi \cos \frac{(a)}{2}}=8 R r \cos ^{2} \frac{A}{2} . \text { Using (a), (1) } \Leftrightarrow \frac{(b+c)^{2}}{4} \geq 8 R r \cos ^{2} \frac{A}{2} \Leftrightarrow \frac{(b+c)^{2}}{4} \geq \frac{8 a b c}{4 \Delta} \cdot \frac{\Delta}{S} \cdot \frac{s(s-a)}{b c} \\
=2 a(s-a)=a(b+c-a) \Leftrightarrow(b+c-2 a)^{2} \geq 0 \rightarrow \text { true } \Rightarrow(1) \text { is true }
\end{gathered}
$$

$$
\because m_{a} \geq \frac{b+c}{2} \cos \frac{A}{2} \text { etc, } \therefore m_{a} \stackrel{b y(1)}{\geq} \sqrt{2 r\left(r_{a}+r_{c}\right)} \cos \frac{A}{2} \stackrel{b y(a)}{=} \sqrt{8 R r \cos ^{2} \frac{A}{2}} \cos \frac{A}{2}=
$$

$$
=\sqrt{2 \operatorname{Rr}}(1+\cos A) \Rightarrow \boldsymbol{m}_{a}{ }^{(i)} \geq \sqrt{2 \operatorname{Rr}}(1+\cos A) . \text { Similarly, } \boldsymbol{m}_{b} \stackrel{(i i)}{\geq} \sqrt{2 \operatorname{Rr}}(1+\cos B)
$$

$$
\& m_{c} \stackrel{(i i i)}{\geq} \sqrt{2 R r}(1+\cos C) ; \text { (i) }+(\text { iii })+(\text { iii }) \Rightarrow \sum m_{a} \geq \sqrt{2 R r}\left(3+1+\frac{r}{R}\right)=\sqrt{2 R r}\left(\frac{4 R+r}{R}\right)=
$$

$$
\begin{gathered}
=\sqrt{\frac{2 r}{R}}(4 R+r) \Rightarrow \sum m_{a} \stackrel{(2)}{\geq} \sqrt{\frac{2 r}{R}}(4 R+r) \text {. Now, } \sum m_{a} \sqrt{\frac{r_{a}}{h_{a}}}=\sum m_{a} \sqrt{\frac{s \tan \frac{A}{2} \cdot a}{2 r s}}= \\
=\sum m_{a} \sqrt{\frac{4 R \sin ^{2} \frac{A}{2}}{2 r}} m_{a} \frac{-\frac{b+c}{2} \cos _{\frac{A}{2}}^{\geq}}{\sum \frac{b+c}{2} \cos \frac{A}{2} \sin \frac{A}{2} \sqrt{\frac{4 R}{2 r}}=\sqrt{\frac{R}{2 r}} \sum \frac{b+c}{2} \cdot \sin A=}
\end{gathered}
$$

$$
=\sqrt{\frac{R}{2 r}} \sum \frac{b+c}{2} \cdot \frac{a}{2 R}=\sqrt{\frac{R}{2 r}}\left(\frac{2 \sum a b}{4 R}\right)=\sqrt{\frac{R}{2 r}}\left(\sum h_{a}\right)\left(\because \frac{b c}{2 R}=h_{a}, e t c\right) \Rightarrow
$$

$$
\Rightarrow \sum m_{a} \sqrt{\frac{r_{a}}{h_{a}}} \stackrel{(3)}{\geq} \sqrt{\frac{R}{2 r}}\left(\sum h_{a}\right)
$$

$$
\text { (2), (3) }\left(\sum \boldsymbol{m}_{a}\right)\left(\sum \boldsymbol{m}_{a} \sqrt{\frac{r_{a}}{h_{a}}}\right) \geq \sqrt{\frac{2 r}{R}}\left(\sum \boldsymbol{r}_{a}\right) \sqrt{\frac{R}{2 r}}\left(\sum \boldsymbol{h}_{a}\right)=\left(\sum r_{a}\right)\left(\sum \boldsymbol{h}_{a}\right) \Rightarrow
$$

$$
\Rightarrow \sum \boldsymbol{m}_{a} \sqrt{\frac{r_{a}}{h_{a}}} \geq \frac{\left(\sum h_{a}\right)\left(\sum r_{a}\right)}{\sum m_{a}} \text { (Hence proved) }
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

873. In $\triangle A B C$:

$$
m_{a}+m_{b}+m_{c}+\frac{1}{\sin \frac{A}{2}}+\frac{1}{\sin \frac{B}{2}}+\frac{1}{\sin \frac{C}{2}}<\left(3+\frac{2}{r}\right) \max (a, b, c)
$$

Proposed by Daniel Sitaru - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\text { WLOG, we may assume max }(a, b, c)=a \therefore a \geq b, a \geq c \Rightarrow \\
3 a \geq a+b+c \Rightarrow 3 a \geq 2 s \Rightarrow \max (a, b, c) \stackrel{(1)}{\geq} \frac{2 s}{3} \because m_{a}<\frac{b+c}{2}, \\
\therefore \sum m_{a}<\frac{4 s}{2}=2 s=3 \cdot \frac{2 s}{3} \stackrel{b y(1)}{\leq} 3 \max (a, b, c) \Rightarrow \sum m_{a}<\stackrel{(2)}{<} 3 \max (a, b, c) \\
\sum \frac{1}{\sin \frac{A}{2}}=\sum \sqrt{\frac{b c}{(s-b)(s-c)}}=\sum \sqrt{\frac{b c(s-a)}{(s-a)(s-b)(s-c)}}=\frac{1}{r \sqrt{s}} \sum \sqrt{b c(s-a)} \stackrel{C B S}{\leq} \\
\leq \frac{1}{r \sqrt{s}} \sqrt{\sum a b} \sqrt{\sum(s-a)}=\frac{\sqrt{\sum a b}}{r}=\frac{\sqrt{3 \sum a b}}{\sqrt{3} r}<\frac{\sqrt{\left(\sum a\right)^{2}}}{\sqrt{3} r}=\frac{2 s}{\sqrt{3} r}=\frac{2 s}{3} \cdot \frac{\sqrt{3}}{r}<\frac{4 s}{3 r}= \\
=\frac{2}{r} \cdot \frac{2 s}{3}=\frac{2}{r} \max (a, b, c) \Rightarrow \sum \frac{1}{\sin \frac{A}{2}} \stackrel{(3)}{<} \frac{2}{r} \max (a, b, c) \\
\text { (2)+(3) } \Rightarrow L H S<\left(3+\frac{2}{r}\right) \max (a, b, c)(\operatorname{Proved})
\end{gathered}
$$

874. In $\triangle A B C$ the following relationship holds:

$$
\sqrt{m_{a} m_{b} m_{c} w_{a} w_{b} w_{c}}<a b c
$$

Proposed by Bodgan Fustei - Romania

Solution Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& m_{a}<\frac{b+c}{2} \text { etc } \Rightarrow \Pi m_{a} \stackrel{(1)}{<} \frac{\Pi(a+b)}{8} ; w_{a} w_{b} w_{c}=\Pi\left(\frac{2 b c}{b+c} \cos \frac{A}{2}\right)=\frac{8 \cdot 16 R^{2} r^{2} s^{2}}{\Pi(a+b)} \cdot \frac{s}{4 R} \stackrel{(2)}{=} \frac{32 R R^{2} s^{3}}{\Pi(a+b)} \\
& \text { (1), (2) } \Rightarrow \boldsymbol{m}_{a} \boldsymbol{m}_{b} \boldsymbol{m}_{c} w_{a} w_{b} w_{c}<4 R r^{2} s^{3}<16 R^{2} r^{2} s^{2} \Leftrightarrow s<4 R \Leftrightarrow s^{2} \stackrel{?}{<} 16 R^{2}
\end{aligned}
$$

$$
\text { But } s^{2} \leq \frac{27 R^{2}}{4}<16 R^{2} \Leftrightarrow 64>27 \rightarrow \text { true (proved) }
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

875. In $\triangle A B C$ the following relationship holds:

$$
\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{a b}{r b+4 R c}+\frac{b c}{r c+4 R a}+\frac{c a}{r a+4 R b}\right) \geq \frac{9}{r_{a}+r_{b}+r_{c}}
$$

Proposed by Daniel Sitaru - Romania
Solution by Soumava Chakraborty-Kolkata-India
$\frac{a b}{r_{b}+4 R c}+\frac{b c}{r c+4 R a}+\frac{c a}{r a+4 R b}=\frac{a^{2} b^{2}}{r a b^{2}+4 R a b c}+\frac{b^{2} c^{2}}{r b c^{2}+4 R a b c}+\frac{c^{2} a^{2}}{r c^{2} a+4 R a b c}$

$$
\stackrel{\left(\sum a b\right)^{2}}{\geq} \frac{\sum a b^{2} \leq \sum a^{3}}{\sum_{(1)}^{\geq}\left(\sum b^{2}\right)+12 R \cdot 4 R r s} \frac{\left(\sum a b\right)^{2}}{r\left(\sum a^{3}\right)+48 R^{2} r s}
$$

Now, $\sum a^{3}=3 a b c+2 s\left(\sum a^{2}-\sum a b\right)=12 R r s+2 s\left(s^{2}-12 R r-3 r^{2}\right) \stackrel{(2)}{=}$

$$
=2 s\left(s^{2}-6 R r-3 r^{2}\right)
$$

$$
\begin{aligned}
& \text { (1), (2) } \Rightarrow \sum \frac{a b}{r b+4 R c} \stackrel{(3)}{\geq} \frac{\left(\sum a b\right)^{2}}{2 r s\left(s^{2}-6 R r-3 r^{2}\right)+48 R^{2} r s}=\frac{\left(\sum a b\right)^{2}}{2 r s\left(24 R^{2}-6 R r-3 r^{2}+s^{2}\right)} \\
& \text { (3) } \Rightarrow \text { LHS } \geq \frac{\left(\sum a b\right)^{3}}{8 R r^{2} s^{2}\left(s^{2}+24 R^{2}-6 R r-3 r^{2}\right)} \stackrel{?}{\geq} \frac{9}{4 R+r} \Leftrightarrow \\
& \Leftrightarrow\left(s^{2}+4 R r+r^{2}\right)^{3}(4 R+r) \underset{(4)}{\stackrel{?}{?}} 72 R r^{2} s^{2}\left(s^{2}+24 R^{2}-6 R r-3 r^{2}\right) \\
& \text { LHS of (4) } \stackrel{\text { Gerretsen }}{\geq}\left(20 R r-4 r^{2}\right)(4 R+r) \\
& \left(s^{4}+r^{2}(4 R+r)^{2}+2 s^{2}\left(4 R r+r^{2}\right)\right) \stackrel{?}{\geq} 72 R r^{2} s^{2}\left(s^{2}+24 R^{2}-6 R r-3 r^{2}\right) \Leftrightarrow \\
& \Leftrightarrow s^{4}\left(20 R^{2}-17 R r-r^{2}\right)+s^{2} r\left\{2(4 R+r)^{2}(5 R-r)-18 R\left(24 R^{2}-6 R r-3 r^{2}\right)\right\}+ \\
& +r^{2}(4 R+r)^{3}(5 R-r)\left(20 R^{2}-17 R r-r^{2}\right) \underset{(5)}{\stackrel{?}{7}} 0 \text {. Now, LHS of }(5) \geq s^{2} r(16 R-5 r)+ \\
& +S^{2} r\left\{2(4 R+r)^{2}(5 R-r)-18 R\left(24 R^{2}-6 R r-3 r^{2}\right)\right\}+r^{2}(4 R+r)^{3}(5 R-r) \stackrel{?}{\geq} 0 \\
& \Leftrightarrow S^{2}\left(48 R^{3}-216 R^{2} r+117 R r^{2}+3 r^{3}\right)+r(4 R+r)^{3}(5 R-r) \stackrel{?}{\geq} 0 \\
& \Leftrightarrow s^{2}\left(48 R^{3}+117 R r^{2}+3 r^{3}\right)+r(4 R+r)^{3}(5 R-r) \underset{(6)}{\stackrel{?}{2}} 216 R^{2} r s^{2}
\end{aligned}
$$

LHS of (6) $\underset{(\bar{a})}{\text { Gerretsen }}\left(16 R r-5 r^{2}\right)\left(48 R^{3}+117 R r^{2}+3 r^{3}\right)+r(4 R+r)^{3}(5 R-r) \&$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
RHS of (6) $\underset{(\bar{b})}{\text { Gerreten }} 216 R^{2} r\left(4 R^{2}+4 R r+3 r^{2}\right)$
(a), (b) \Rightarrow in order to prove (6), it suffices to prove:

$$
(16 R-5 r)\left(48 R^{3}+117 R r^{2}+3 r^{3}\right)+
$$

$$
+(4 R+r)^{3}(5 R-r) \geq 216 R^{2}\left(4 R^{2}+4 R r+3 r^{2}\right)
$$

$$
\Leftrightarrow 56 t^{4}-232 t^{3}+309 t^{2}-136 t-4 \geq 0 \quad\left(t=\frac{R}{r}\right) \Leftrightarrow
$$

$$
\Leftrightarrow(t-2)[(t-2)\{(t-2)(56 t+104)+261\}+108] \geq 0 \rightarrow \text { true } \because t \stackrel{\text { Euler }}{\geq} 2 \text { (proved) }
$$

876. In $\triangle A B C$ the following relationship holds:

$$
\left(3 h_{a}-7 r\right) w_{a}+\left(3 h_{b}-7 r\right) w_{b}+\left(3 h_{c}-7 r\right) w_{c} \geq 2 r\left(m_{a}+m_{b}+m_{c}\right)
$$

Proposed by Bogdan Fustei - Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\left.\begin{array}{c}
\sum\left(3 h_{a}-7 r\right) w_{a}=\sum\left(3 h_{a}-6 r\right) w_{a}-r \sum w_{a}=\sum\left(\frac{6 \Delta}{a}-\frac{6 \Delta}{s}\right) w_{a}-r \sum w_{a}= \\
=\sum \frac{6 r s}{a s}(s-a) w_{a}-r \sum w_{a}=3 r \sum \frac{b+c-a}{a} w_{a}-r \sum w_{a}= \\
=3 r \sum \frac{b+c}{a} w_{a}-4 r \sum w_{a} \geq 2 r\left(\sum m_{a}\right) \Leftrightarrow 3 \sum \frac{b+c}{a} w_{a} \geq 4 \sum w_{a}+2 \sum m_{a} \\
\text { Now, }\left(\sum m_{a}\right)^{2(a)} \leq 4 s^{2}-16 R r+5 r^{2}(\text { X.G.Chu,X.Z.Yang }) \\
\left(\sum w_{a}\right)^{2(b)} \leq(4 R+r)\left(\sum h_{a}\right)(\text { Bogdan Fustei }), \\
\sum\left(\frac{b+c}{a}\right) w_{a} \leq 2 s \sqrt{3}(\text { Bogdan Fustei })
\end{array}\right\}
$$

Now, $2 \sum w_{a} \leq 2 \sum \sqrt{s(s-a)} \stackrel{c-B-S}{\leq} 2 \sqrt{3} \sqrt{s} \sqrt{s}=$ $=2 \sqrt{3} s \stackrel{b y(c)}{\leq} \sum\left(\frac{b+c}{a}\right) w_{a} \Rightarrow 2 \sum w_{a} \stackrel{(i)}{\leq} \sum\left(\frac{b+c}{a}\right) w_{a}$
(i) \Rightarrow in order to prove (1), it suffices to prove: $2 \sum \frac{b+c}{a} w_{a} \geq 2 \sum w_{a}+2 \sum m_{a} \Leftrightarrow$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
\Leftrightarrow \sum \frac{b+c}{a} w_{a} \stackrel{(2)}{\geq} \sum w_{a}+\sum m_{a} . \text { Now, LHS of (2) } \\
\underset{(m)}{C B S} \sqrt{2} \sqrt{\left(\sum w_{a}\right)^{2}+\left(\sum m_{a}\right)^{2}} \stackrel{b y(a),(b)}{\leq} \sqrt{2} \sqrt{\frac{(4 R+r)\left(s^{2}+4 R r+r^{2}\right)}{2 R}+4 s^{2}-16 R r+5 r^{2}} \\
=\sqrt{\frac{(4 R+r)\left(s^{2}+4 R r+r^{2}\right)+2 R\left(4 s^{2}-16 R r+5 r^{2}\right)}{R}}
\end{gathered}
$$

Again, LHS of (2) $\stackrel{b y(c)}{\geq} 2 s \sqrt{3} ;(\mathrm{m}),(\mathrm{n}) \Rightarrow$ in order to prove (2), it suffices to prove:

$$
\begin{gathered}
2 s \sqrt{3} \geq \sqrt{\frac{(12 R+r) s^{2}+r(4 R+r)^{2}-2 R\left(16 R r-5 r^{2}\right)}{R}} \Leftrightarrow \\
\Leftrightarrow 12 R s^{2} \geq 12 R s^{2}+r s^{2}+r(4 R+r)^{2}-2 R\left(16 R r-5 r^{2}\right) \Leftrightarrow \\
\Leftrightarrow r\left\{2 R(16 R-5 r)-(4 R+r)^{2}\right\} \geq r s^{2} \Leftrightarrow s^{2} \stackrel{(3)}{\leq} 16 R^{2}-18 R r-r^{2} \\
\text { Now, LHS of (3) } \stackrel{\text { Gerretsen }}{\leq} 4 R^{2}+4 R r+3 r^{2} \stackrel{(?)}{\leq} 16 R^{2}-18 R r-r^{2} \Leftrightarrow \\
\Leftrightarrow 6 R^{2}-11 R r-2 r^{2} \stackrel{?}{\geq} 0 \Leftrightarrow(R-2 r)(6 R+r) \stackrel{?}{\geq} 0 \rightarrow \text { true } \because R \stackrel{\text { Euler }}{\geq} 2 r \Rightarrow \\
\Rightarrow(3) \text { is true } \Rightarrow(2) \text { is true (proved) }
\end{gathered}
$$

877. In $\triangle A B C$ the following relationship holds:

$$
\left(\frac{a^{2}}{4 r}+\frac{h_{a}^{2}}{r}\right)\left(\frac{b^{2}}{4 r}+\frac{h_{b}^{2}}{r}\right)\left(\frac{c^{2}}{4 r}+\frac{h_{c}^{2}}{r}\right) \geq 64 h_{a} h_{b} h_{c}
$$

Proposed by Daniel Sitaru - Romania
Solution by Marian Ursărescu - Romania

$$
\begin{align*}
\frac{a^{2}}{4 r}+\frac{4 a^{2}}{r}=\frac{1}{r}\left(\frac{a^{3}}{4}+\frac{4 S^{2}}{a^{2}}\right) & =\frac{1}{r}\left(\frac{a^{2}}{4}+\frac{4 S^{2}}{3 a^{2}}+\frac{4 S^{2}}{3 a^{2}}+\frac{4 S^{2}}{3 a^{2}}\right) \geq \frac{1}{r} \cdot 4 \sqrt[4]{\frac{a^{2}}{4} \cdot \frac{4^{3} \cdot S^{6}}{27 a^{6}}} \Rightarrow \\
& \Rightarrow \frac{a^{2}}{4 r}+\frac{4 a^{2}}{r} \geq \frac{8 S}{3 a r} \cdot \sqrt[4]{3 S^{2}} \tag{1}
\end{align*}
$$

From (1) $\Rightarrow\left(\frac{a^{2}}{4 r}+\frac{h_{a}^{2}}{r}\right)\left(\frac{b^{2}}{4 r}+\frac{h_{b}^{2}}{r}\right)\left(\frac{c^{2}}{4 r}+\frac{h_{c}^{2}}{r}\right) \geq \frac{8^{3} S^{3}}{27 a b c r^{3}} \sqrt[4]{27 S^{6}}$
From (2) we must show:

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{gathered}
\frac{8^{3} S^{4}}{27 a b c r^{4}} \sqrt[4]{27 S^{2}} \geq 64 h_{a} h_{b} h_{c} \Leftrightarrow \frac{8 S^{4}}{27 a b c r^{3}} \sqrt[4]{27 \cdot S^{2}} \geq \frac{8 S^{3}}{a b c} \Leftrightarrow \frac{S^{4} \sqrt[4]{27 S^{2}}}{27 r^{3}} \geq 1 \Leftrightarrow \\
\Leftrightarrow S^{4} \sqrt{27 S^{2}} \geq 3^{3} r^{3} \Leftrightarrow S^{4} \cdot 27 S^{2} \geq 3^{12} r^{12} \Leftrightarrow S^{6} \geq 3^{9} r^{12} \Leftrightarrow S \geq 3 \sqrt{3} r^{2}
\end{gathered}
$$

Which its true, because $S \geq 3 \sqrt{3} \frac{s^{2}}{s^{2}} \Leftrightarrow s^{2} \geq 3 \sqrt{3} S \Leftrightarrow s^{4} \geq 27 S^{2} \Leftrightarrow$ $\Leftrightarrow s^{3} \geq 27(s-a)(s-b)(s-c) \Leftrightarrow s \geq 3 \sqrt[3]{(s-a)(s-b)(s-c)}$ true
878. In $\triangle A B C$ the following relationship holds:

$$
\frac{a}{r_{b}^{2}+r_{c}^{2}}+\frac{b}{r_{c}^{2}+r_{a}^{2}}+\frac{c}{r_{a}^{2}+r_{b}^{2}} \leq \frac{2 R-r}{S}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution by Daniel Sitaru-Romania

$$
\begin{gathered}
\sum \frac{a}{r_{b}^{2}+r_{c}^{2}}=\sum \frac{a}{\left(\frac{S}{s-b}\right)^{2}+\left(\frac{S}{s-c}\right)^{2}}=\frac{1}{S^{2}} \sum \frac{a}{\frac{(s-b)^{2}+(s-c)^{2}}{(s-b)^{2}(s-c)^{2}}}= \\
=\frac{1}{S r s} \sum \frac{a(s-b)^{2}(s-c)^{2}}{(s-b)^{2}+(s-c)^{2}} \stackrel{\text { M }}{ }_{\leq}^{\leq M} \frac{1}{S r s} \sum \frac{a(s-b)^{2}(s-c)^{2}}{2(s-b)(s-c)}=\frac{1}{2 S r s} \cdot 2 r s(2 R-r)=\frac{2 R-r}{S}
\end{gathered}
$$

879. If in $\triangle A B C, K$ - Lemoine's point then:

$$
A K^{2}+B K^{2}+C K^{2} \geq \frac{a b c(a+b+c)}{a^{2}+b^{2}+c^{2}}
$$

Proposed by Marian Ursărescu - Romania

Solution by Soumava Chakraborty-Kolkata-India
Let $A K_{A}$ be the symmedian from A to $B C$. Now, $\frac{K K_{A}}{A K}=\frac{a^{2}}{b^{2}+c^{2}}$ (Honsberger) \Rightarrow

$$
\Rightarrow \frac{K K_{A}}{A K}+\mathbf{1}=\frac{\sum a^{2}}{b^{2}+c^{2}} \Rightarrow \frac{A K_{A}}{A K}=\frac{\sum a^{2}}{b^{2}+c^{2}} \Rightarrow A K \stackrel{(1)}{=}\left(\frac{b^{2}+c^{2}}{\sum a^{2}}\right) A K_{A} . \text { Again }, \frac{B K_{A}}{c K_{A}}=\frac{c^{2}}{b^{2}} \Rightarrow \frac{m}{n}=\frac{c^{2}}{b^{2}},
$$

where $\boldsymbol{m}=\boldsymbol{B} \boldsymbol{K}_{A}, \boldsymbol{n}=\boldsymbol{C} \boldsymbol{K}_{A}$. Stewart's theorem with cevian
$A K_{A} \Rightarrow \boldsymbol{b}^{2} \boldsymbol{m}+\boldsymbol{c}^{2} \boldsymbol{n} \stackrel{(2)}{=} \boldsymbol{a}\left(\boldsymbol{d}^{2}+\boldsymbol{m n}\right)\left(\right.$ where $\left.\boldsymbol{d}=A K_{A}\right) \because \frac{m}{n}=\frac{c^{2}}{b^{2}} \& m+\boldsymbol{n}=\boldsymbol{a}$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$\therefore \frac{m+n}{n}=\frac{b^{2}+c^{2}}{b^{2}} \Rightarrow \frac{a}{n}=\frac{b^{2}+c^{2}}{b^{2}} \Rightarrow n \stackrel{(a)}{=} \frac{a b^{2}}{b^{2}+c^{2}} \& m \stackrel{(b)}{=} \frac{a c^{2}}{b^{2}+c^{2}} . \operatorname{Using}(\mathbf{a}),(b),(2)$ becomes:

$$
\begin{aligned}
& \frac{b^{2} a c^{2}+c^{2} a b^{2}}{b^{2}+c^{2}}=a\left(d^{2}+\frac{a^{2} b^{2} c^{2}}{\left(b^{2}+c^{2}\right)^{2}}\right) \Rightarrow \frac{2 b^{2} c^{2}}{b^{2}+c^{2}}=\left\{\frac{d^{2}\left(b^{2}+c^{2}\right)+a^{2} b^{2} c^{2}}{\left(b^{2}+c^{2}\right)^{2}}\right\} \Rightarrow \\
\Rightarrow & 2 b^{2} c^{2}\left(b^{2}+c^{2}\right)=d^{2}\left(b^{2}+c^{2}\right)^{2}+a^{2} b^{2} c^{2} \Rightarrow b^{2} c^{2}\left(2 b^{2}+2 c^{2}-a^{2}\right)=d^{2}\left(b^{2}+c^{2}\right)^{2} \Rightarrow \\
\Rightarrow & d^{2}=\frac{4 b^{2} c^{2}}{\left(b^{2}+c^{2}\right)^{2}}\left(\frac{2 b^{2}+2 c^{2}-a^{2}}{4}\right)=\frac{4 b^{2} c^{2}}{\left(b^{2}+c^{2}\right)^{2}} m_{a}^{2} \Rightarrow d=A K_{A} \stackrel{(3)}{=} \frac{2 b c}{b^{2}+c^{2}} \cdot m_{a}
\end{aligned}
$$

$$
\text { (1), (3) } \Rightarrow A K=\frac{2 b c}{\sum a^{2}} m_{a} \Rightarrow A K^{2} \stackrel{(i)}{=} \frac{4 b^{2} c^{2}}{\left(\Sigma a^{2}\right)^{2}} m_{a}^{2} . \text { Similarly, } B K^{2} \stackrel{(i i)}{=} \frac{4 c^{2} a^{2}}{\left(\Sigma a^{2}\right)^{2}} m_{b}^{2} \&
$$

$$
C K^{2} \stackrel{(i i i)}{=} \frac{4 a^{2} b^{2}}{\left(\sum a^{2}\right)^{2}} m_{c}^{2} ;(\mathrm{i})+(\mathrm{ii})+(\mathrm{iii}) \Rightarrow \sum A K^{2}=\frac{4}{\left(\sum a^{2}\right)^{2}} \sum b^{2} c^{2} m_{a}^{2} \stackrel{m_{a}^{2} \geq s(s-a), \text { etc }}{\geq}
$$

$$
\geq \frac{4 s}{\left(\sum a^{2}\right)^{2}} \sum b^{2} c^{2}(s-a)=\frac{4 s}{\left(\sum a^{2}\right)^{2}}\left\{s \sum a^{2} b^{2}-a b c\left(\sum a b\right)\right\} \geq
$$

$$
\geq \frac{4 s}{\left(\sum a^{2}\right)^{2}}\left\{s a b c(2 s)-a b c\left(s^{2}+4 R r+r^{2}\right)\right\}=\frac{4 s a b c}{\left(\sum a^{2}\right)^{2}}\left(2 s^{2}-s^{2}-4 R r-r^{2}\right)=
$$

$$
=\frac{a b c(a+b+c)\left\{2\left(s^{2}-4 R r-r^{2}\right)\right\}}{\left(\sum a^{2}\right)^{2}}=\frac{a b c(a+b+c)\left(\sum a^{2}\right)}{\left(\sum a^{2}\right)^{2}}=\frac{a b c(a+b+c)}{\sum a^{2}} \text { (proved) }
$$

880. In $\triangle A B C$ the following relationship holds:

$$
\frac{a^{4}+b^{4}+c^{4}}{2 r} \geq w_{a} w_{b} w_{c}\left(5+\frac{h_{a}}{r_{a}}+\frac{h_{b}}{r_{b}}+\frac{h_{c}}{r_{c}}\right)
$$

Proposed by Bogdan Fustei - Romania
Solution by M yagmarsuren Yadamsuren-Darkhan-M ongolia

1) LHS: $\frac{a^{4}+b^{4}+c^{4}}{2 r} \stackrel{\text { Chebyshev }}{\geq} \frac{(a+b+c)\left(a^{3}+b^{3}+c^{3}\right)}{6 r}=\frac{4 s^{2}\left(s^{2}-6 R r-3 r^{2}\right)}{6 r}=\frac{2 s^{2}\left(s^{2}-6 R r-3 r^{2}\right)}{3 r}$
2) $\Pi w_{a}\left(5+\sum \frac{h_{a}}{r_{a}}\right) \leq s \cdot S \cdot\left(5+\sum \frac{2(s-a)}{a}\right)=s \cdot S \cdot\left(5-6+2 s \sum \frac{1}{a}\right)=$

$$
\begin{gather*}
=s \cdot S \cdot\left(\frac{2 s \sum a b}{a b c}-1\right)= \\
=s \cdot S\left(\frac{s^{2}+2 R r+r^{2}}{2 R r}\right)=r \cdot s^{2} \cdot \frac{\left(s^{2}+2 R r+r^{2}\right)}{2 R r}=\frac{s^{2}\left(s^{2}+2 R r+r^{2}\right)}{2 R} \tag{**}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
\left(^{*}\right) ;\left({ }^{* *}\right) \Rightarrow \frac{2 s^{2}\left(s^{2}-6 R r-3 r^{2}\right)}{3 r} \geq \frac{s^{2}\left(s^{2}+2 R r+r^{2}\right)}{2 R} \text { (ASSURE) } \\
4 R\left(s^{2}-6 R r-3 r^{2}\right) \geq 3 r\left(s^{2}+2 R r+r^{2}\right) \\
(4 R-3 r) s^{2}-24 R^{2} r-18 R r^{2}=3 r^{3} \geq 0 \Rightarrow 16 R r-5 r^{2} \leq s^{2} \\
(4 R-3 r)\left(16 R r-5 r^{2}\right)-24 R^{2} r-18 R r^{2}-3 r^{3} \geq 0 \\
(4 R-3 r)(16 R-5 r)-24 R^{2}-18 R r-3 r^{2} \geq 0 \\
64 R^{2}-68 R r+15 r^{2}-24 R^{2}-18 R r-3 r^{2} \geq 0 \\
40 R^{2}-86 R r+12 r^{2} \geq 0 ; \\
\left(20 R^{2}-43 R r+6 r^{2} \geq 0\right. \\
(20 R-3 r) \cdot(R-2 r) \geq 0 \\
\Rightarrow 0
\end{gathered}
$$

881. In $\triangle A B C$ the following relationship holds:

$$
r_{a}\left(h_{b}+h_{c}\right)^{2}+r_{b}\left(h_{c}+h_{a}\right)^{2}+r_{c}\left(h_{a}+h_{b}\right)^{2} \geq 12 s S
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution 1 by M arian Ursarescu-Romania

$$
\begin{gathered}
\left(h_{b}+h_{c}\right)^{2} \geq 4 h_{b} \boldsymbol{h}_{\boldsymbol{c}} \Rightarrow r_{\boldsymbol{a}}\left(\boldsymbol{h}_{\boldsymbol{b}}+\boldsymbol{h}_{\boldsymbol{c}}\right)^{2} \geq 4 \boldsymbol{r}_{a} \boldsymbol{h}_{\boldsymbol{b}} \boldsymbol{h}_{\boldsymbol{c}} \Rightarrow \text { We must show this: } \\
\\
\mathbf{4 \sum r _ { a } h _ { b } h _ { c } \geq 1 2 s S} \\
\Leftrightarrow \sum \frac{r_{a} h_{b} h_{b} h_{c}}{h_{a}} \geq 3 s S \Leftrightarrow h_{a} h_{b} h_{c} \cdot \sum \frac{r_{a}}{h_{a}} \geq 3 s S
\end{gathered}
$$

$$
\begin{equation*}
\text { But } \boldsymbol{h}_{a} \boldsymbol{h}_{b} \boldsymbol{h}_{c}=\frac{2 s^{2} r^{2}}{R} \text { (2) and } \sum \frac{r_{a}}{h_{a}}=\sum \frac{\frac{s}{s-a}}{\frac{2 s}{a}}=\frac{1}{2} \sum \frac{a}{s-a}=\frac{1}{2} \cdot \frac{2(2 R-r)}{r}=\frac{2 R-r}{r} \tag{3}
\end{equation*}
$$

From (1)+ (2)+ (3) we must show: $\frac{2 s^{2} r^{2}}{R} \cdot \frac{2 R-r}{r} \geq 3 s s r \Leftrightarrow 2(2 R-r) \geq 3 R \Leftrightarrow$

$$
\Leftrightarrow 4 R-2 r \geq 3 R \Leftrightarrow R \geq 2 r \text { (true from Euler) }
$$

Solution 2 by Soumava Chakraborty-Kolkata-India
Firstly, $\sum a^{3}=3 a b c+2 s\left(\sum a^{2}-\sum a b\right)=12 R r s+2 s\left(s^{2}-12 R r-3 r^{2}\right) \stackrel{(1)}{=}$ $=2 s\left(s^{2}-6 R r-3 r^{2}\right.$. Also, $\sum \frac{1}{s-a}=\frac{\sum(s-b)(s-c)}{s r^{2}}=\frac{\sum\left(s^{2}-s(b+c)+b c\right)}{s r^{2}}=\frac{3 s^{2}-4 s^{2}+s^{2}+4 R r+r^{2}}{s r^{2}}=$

$$
\stackrel{(2)}{=} \frac{4 R+r}{s r}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
& \sum r_{a}\left(h_{b}+h_{c}\right)^{2}=\sum\left(\frac{S}{s-a}\right)\left(\frac{c a}{2 R}+\frac{a b}{2 R}\right)^{2}=\left(\frac{S}{4 R^{2}}\right)\left(\sum \frac{a^{2}(b+c)^{2}}{s-a}\right)= \\
&=\left(\frac{S}{4 R^{2}}\right)\left(\sum \frac{a^{2}(s+s-a)^{2}}{s-a}\right)=\left(\frac{S}{4 R^{2}}\right)\left(\sum \frac{a^{2}\left(s^{2}+(s-a)^{2}+2 s(s-a)\right)}{s-a}\right)= \\
&= \frac{S s^{2}}{4 R^{2}} \sum \frac{a^{2}}{s-a}+\frac{S}{4 R^{2}} \sum a^{2}(s-a)+\frac{S s}{2 R^{2}} \sum a^{2}=\frac{S s^{2}}{4 R^{2}} \sum \frac{a^{2}-s^{2}+s^{2}}{s-a}+\frac{S s}{4 R^{2}} \sum a^{2}- \\
&-\frac{S}{4 R^{2}} \sum a^{3}+\frac{S s}{2 R^{2}} \sum a^{2} \stackrel{b y(1)}{=}-\frac{S s^{2}}{4 R^{2}} \sum(a+s)+\frac{S s^{4}}{4 R^{2}} \sum \frac{1}{s-a}+ \\
&+\frac{6 S s}{4 R^{2}}\left(s^{2}-4 R r-r^{2}\right)-\frac{2 S s}{4 R^{2}}\left(s^{2}-6 R r-3 r^{2}\right) \stackrel{b y(2)}{=}-\frac{5 r s^{4}}{4 R^{2}}+\frac{(4 R+r) s^{4}}{4 R^{2}}+ \\
&+ \frac{r s^{2}}{2 R^{2}}\left(3\left(s^{2}-4 R r-r^{2}\right)-\left(s^{2}-6 R r-3 r^{2}\right)\right)=\frac{(R-r) s^{4}}{R^{2}}+\frac{r s^{2}}{R^{2}}\left(s^{2}-3 R r\right)= \\
&= \frac{(R-r) s^{4}+r s^{2}\left(s^{2}-3 R r\right)}{R^{2}}=\frac{s^{2}\left(s^{2}-3 r^{2}\right)}{R} \geq 12 s S \Leftrightarrow s^{2}-3 r^{2} \geq 12 R r \Leftrightarrow \\
& \Leftrightarrow s^{2} \stackrel{(3)}{\geq} 12 R r+3 r^{2} . \text { Now, LHS of (3) } \stackrel{\text { Gerretsen }}{\geq} 16 R r-5 r^{2} \geq 12 R r+3 r^{2} \Leftrightarrow 4 R r \geq 8 r^{2} \\
& \rightarrow \text { true (Euler) (proved) }
\end{aligned}
$$

882. In $\Delta A B C$ the following relationship holds:

$$
w_{a}+w_{b}+w_{c} \leq \sqrt{\left(\boldsymbol{r}_{\boldsymbol{a}}+\boldsymbol{r}_{b}+r_{c}\right)\left(\boldsymbol{h}_{a}+\boldsymbol{h}_{b}+\boldsymbol{h}_{c}\right)}
$$

Proposed by Bogdan Fustei - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\sum w_{a}=\sum \frac{2 b c}{b+c} \cos \frac{A}{2}=\sum \frac{2 \sqrt{b c}}{b+c} \sqrt{s(s-a)} \stackrel{c-B-s}{\leq} 2 \sqrt{s} \sqrt{\sum b c} \sqrt{\sum \frac{s-a}{(b+c)^{2}}} \leq \\
=\sqrt{\sum a b} \sqrt{\frac{s(2 s)-2\left(s^{2}-4 R r-r^{2}\right)}{4 R r}}=\sqrt{\sum a b \sqrt{\frac{4 R+r}{2 R}}=\sqrt{\frac{\sum a b}{2 R} \sqrt{\sum r_{a}}}=} .
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
=\sqrt{\left(\sum h_{a}\right)\left(\sum r_{a}\right)} \quad\left(\because \frac{a b}{2 R}=\boldsymbol{h}_{c},\right. \text { etc) (proved) }
$$

883. In $\triangle A B C$ the following relationship holds:

$$
r_{a} \sqrt{\frac{h_{a}}{m_{a}}}+r_{b} \sqrt{\frac{h_{b}}{m_{b}}}+r_{c} \sqrt{\frac{h_{c}}{m_{c}}} \leq \sqrt{24 R^{2}-15 r^{2}}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\because m_{a} \geq h_{a}, \text { etc, }: \therefore L H S \leq \sum r_{a}=4 R+r{ }^{?} \leq \sqrt{24 R^{2}-15 r^{2}} \Leftrightarrow R^{2}-R r-2 r^{2} \geq 0 \\
\Leftrightarrow(R-2 r)(R+r) \stackrel{?}{\geq} 0 \rightarrow \text { true (Euler) (proved) }
\end{gathered}
$$

884. In $\triangle A B C$ the following relationship holds:

$$
\frac{a}{s_{a}}+\frac{b}{s_{b}}+\frac{c}{s_{c}} \geq 8 \sqrt{3}\left(\frac{r}{R}\right)^{2}
$$

Proposed by Mehmet Sahin-Ankara-Turkey

Solution 1 by Marian Ursarescu-Romania
In any $\triangle A B C$ we have: $s_{a} \leq m_{a} \Rightarrow \frac{1}{s_{a}} \geq \frac{1}{m_{a}} \Rightarrow$ we must show:

$$
\begin{equation*}
\frac{a}{m_{a}}+\frac{b}{m_{b}}+\frac{c}{m_{c}} \geq 8 \sqrt{3}\left(\frac{r}{R}\right)^{2} \tag{1}
\end{equation*}
$$

But $\frac{a}{m_{a}}+\frac{b}{m_{b}}+\frac{c}{m_{c}}=\frac{a^{2}}{a m_{a}}+\frac{b^{2}}{b m_{b}}+\frac{c^{2}}{c m_{c}} \geq \frac{(a+b+c)^{2}}{a m_{a}+b m_{b}+c m_{c}}$ (2) (from Bergrtröm inequality).
From Cauchy's inequality we have: $\left(a m_{a}+b m_{b}+c m_{c}\right)^{2} \leq$

$$
\begin{gathered}
\leq\left(a^{2}+b^{2}+c^{2}\right)\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right) \Rightarrow\left(a m_{a}+b m_{b}+c m_{c}\right)^{2} \leq \frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right)^{2} \Rightarrow \\
\frac{1}{a m_{a}+b m_{b}+c m_{c}} \geq \frac{2}{\sqrt{3}} \cdot \frac{1}{a^{2}+b^{2}+c^{2}} \text { (3). From (1)+(2)+ (3) }
\end{gathered}
$$

$$
\text { we must show: } \frac{8 p^{2}}{\sqrt{3}\left(a^{2}+b^{2}+c^{2}\right)} \geq 8 \sqrt{3} \frac{r^{2}}{R^{2}}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{gathered}
\Leftrightarrow p^{2} R^{2} \geq 3 r^{2}\left(a^{2}+b^{2}+c^{2}\right) \text { (4). But } p^{2} \geq 27 r^{2} \text { and } R^{2} \geq \frac{a^{2}+b^{2}+c^{2}}{9} \Rightarrow \\
\Rightarrow p^{2} R^{2} \geq 3 r^{2}\left(a^{2}+b^{2}+c^{2}\right) \Rightarrow \text { (4) its true. }
\end{gathered}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \sum \frac{a}{s_{a}}=\sum \frac{a}{\frac{2 b c}{b^{2}+c^{2}} m_{a}}=\frac{1}{2} \sum \frac{a\left(b^{2}+c^{2}\right)}{b c m_{a}}=\frac{1}{2} \sum \frac{a^{2}\left(b^{2}+c^{2}\right)}{a b c m_{a}}=\frac{1}{2 a b c} \sum \frac{a^{2}\left(b^{2}+c^{2}\right)}{m_{a}}= \\
= & \frac{1}{2 a b c}\left(\sum \frac{a^{2} b^{2}}{m_{a}}+\sum \frac{a^{2} c^{2}}{m_{a}}\right) \stackrel{B e r g s t r o ̈ m}{\geq}\left(\frac{2}{2 a b c}\right) \frac{\left(\sum a b\right)^{2}}{\sum m_{a}} \stackrel{\sum m_{a} \leq 4 R+r}{\geq} \frac{\left(\sum a b\right)^{2}}{4 R S(4 R+r)} \stackrel{\text { Gordon }}{\geq} \\
& \geq \frac{4 \sqrt{3} S\left(\sum a b\right)}{4 R S(4 R+r)}=\frac{\sqrt{3}\left(\sum a b\right)}{R(4 R+r)} \stackrel{?}{\geq} 8 \sqrt{3}\left(\frac{r}{R}\right)^{2} \Leftrightarrow R\left(s^{2}+4 R r+r^{2}\right) \underset{(1)}{\geq} 8 r^{2}(4 R+r)
\end{aligned}
$$

Now, LHS of (1) $\stackrel{\text { Gerretsen }}{\geq} R\left(20 R r-4 r^{2}\right) \stackrel{?}{\geq} 8 r^{2}(4 R+r) \Leftrightarrow 5 R^{2}-9 R r-2 r^{2} \geq ? 0$

$$
\Leftrightarrow(R-2 r)(5 R+r) \stackrel{?}{\geq} 0 \rightarrow \text { true (Euler) } \Rightarrow(1) \text { is true (proved) }
$$

885. In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a}^{2}}{w_{a}}+\frac{m_{b}^{2}}{w_{b}}+\frac{m_{c}^{2}}{w_{c}} \geq \frac{2 r}{R} \sqrt{\frac{\left(r_{a}+r_{b}+r_{c}\right)^{3}}{h_{a}+h_{b}+h_{c}}}
$$

Proposed by Bogdan Fustei - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\text { By Bogdan Fustei, } \frac{b+c}{2} \xrightarrow{(1)} \sqrt{2 r\left(r_{b}+r_{c}\right)} \text {. }
$$

Proof of (1): $2 r\left(r_{b}+r_{c}\right)=2 r s\left(\tan \frac{B}{2}+\tan \frac{C}{2}\right)=$
$=2 r s\left(\frac{\sin \frac{B}{2}}{\cos \frac{B}{2}}+\frac{\sin \frac{C}{2}}{\cos \frac{C}{2}}\right)=2 r s \frac{\sin \left(\frac{B+C}{2}\right)}{\cos \frac{B}{2} \cos \frac{C}{2}}=\frac{2 r s \cos ^{2} \frac{A}{2}}{\prod \cos \frac{A}{2}}=\frac{2 r s \cos ^{2} \frac{A}{2}}{\frac{s}{4 R}} \stackrel{(a)}{=} 8 R r \cos ^{2} \frac{A}{2}$
Using (a), (1) $\Leftrightarrow \frac{(b+c)^{2}}{4} \geq 8 \operatorname{Rr} \cos ^{2} \frac{A}{2} \Leftrightarrow \frac{(b+c)^{2}}{4} \geq \frac{8 a b c}{4 \Delta} \cdot \frac{\Delta}{s} \cdot \frac{s(s-a)}{b c}=\frac{2 a(s-a)}{1} \Leftrightarrow$
$\Leftrightarrow(b+c)^{2} \geq 4 a(b+c-a)=4 a(b+c)-4 a^{2} \Leftrightarrow(b+c)^{2}+4 a^{2}-4 a(b+c) \Leftrightarrow$ $\Leftrightarrow(b+c-2 a)^{2} \geq 0 \rightarrow$ true $\Rightarrow(1)$ is true. Now, $\because m_{a} \geq w_{a}$, etc, LHS of $(\mathbf{i}) \geq$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\geq \sum m_{a} \stackrel{m_{a} \geq \frac{b+c}{2} \cos \frac{A}{2}, e t c}{\geq} \sum \frac{b+c}{2} \cos \frac{A}{2} \stackrel{\text { by }(1)}{\geq} \sum \sqrt{2 r\left(r_{b}+r_{c}\right)} \cos \frac{A}{2} \stackrel{\text { by }(a)}{=} \sum \sqrt{8 R r} \cos ^{2} \frac{A}{2} \\
=\sum \sqrt{2 R r}(1+\cos A)=\sqrt{2 R r}\left\{\sum(1+\cos A)\right\}=\sqrt{2 R r}\left(3+1+\frac{r}{R}\right)=\sqrt{2 R r}\left(\frac{4 R+r}{R}\right) \\
\geq \frac{?}{\geq} \frac{2 r}{R} \sqrt{\frac{(4 R+r)^{3} 2 R}{\sum a b}}(\text { RHS of }(\mathrm{i})) \Leftrightarrow 4 R+r \stackrel{?}{\geq}(4 R+r) \sqrt{\frac{4 r(4 R+r)}{s^{2}+4 R r+r^{2}}} \Leftrightarrow \\
s^{2}+4 R r+r^{2} \stackrel{?}{\geq} 16 R r+4 r^{2} \Leftrightarrow s^{2} \underset{(\text { iii) }}{\geq} 12 R r+3 r^{2} . \\
\text { Now, LHS of (ii) } \stackrel{\text { Gerretsen }}{\geq} 16 R r-5 r^{2} \xrightarrow[\geq]{\geq} 12 R r+3 r^{2} \\
\Leftrightarrow 4 R r \xrightarrow[?]{\geq} 8 r^{2} \Leftrightarrow R \stackrel{?}{\geq} 2 r \rightarrow \text { true (proved) }
\end{gathered}
$$

886. In $\triangle A B C$ the following relationship holds:

$$
m_{a}+m_{b}+m_{c} \geq \frac{h_{a} h_{b}}{h_{c}}+\frac{h_{b} h_{c}}{h_{a}}+\frac{h_{c} h_{a}}{h_{b}}
$$

Proposed by Bogdan Fustei-Romania
Solution by Daniel Sitaru-Romania

$$
\begin{gathered}
\sum m_{a} \stackrel{\text { TERESHIN }}{\gtrless} \sum \frac{b^{2}+c^{2}}{4 R}=\frac{1}{4 R} \cdot 2 \sum a^{2}=\frac{2 S}{4 R S} \sum a^{2}=\frac{2 S}{a b c} \sum a^{2}= \\
=2 S \sum \frac{a}{b c}=\sum \frac{\frac{2 S}{b} \cdot \frac{2 S}{c}}{\frac{2 S}{a}}=\sum \frac{h_{b} h_{c}}{h_{a}}
\end{gathered}
$$

887. In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a}^{2}}{b c}+\frac{m_{b}^{2}}{c a}+\frac{m_{c}^{2}}{a b} \geq 2+\frac{r}{2 R}
$$

Proposed by Adil Abdullayev-Baku-Azerbaidian
Solution 1 by Bogdan Fustei-Romania

$$
\frac{1}{2 R} \cdot \sum \frac{m_{a}^{2}}{h_{a}}=\sum \frac{m_{a}^{2}}{b c} \geq \frac{4 R+r}{2 R} \Rightarrow \sum \frac{m_{a}^{2}}{h_{a}} \geq 4 R+r=r_{a}+r_{b}+r_{c}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
m_{a}^{2}=\frac{2\left(b^{2}+c^{2}\right)-a^{2}}{4} \text { (and analogs) } \\
m_{a}^{2}=\frac{2\left(b^{2}+c^{2}\right)-a^{2}+4 b c-4 b c}{4}=\frac{\left(b^{2}+c^{2}+2 b c\right)+\left(b^{2}+c^{2}+2 b c\right)-a^{2}-4 b c}{4} \\
m_{a}^{2}=\frac{\left[(b+c)^{2}-a^{2}\right]+(b+c)^{2}-4 b c}{4}=\frac{(a+b+c)(b+c-a)+\left(b^{2}+c^{2}-2 b c\right)}{4} \\
m_{a}^{2}=\frac{2 p(p-a)+(b-c)^{2}}{4}=p(p-a)+\frac{(b-c)^{2}}{4} \text { (and analogs) } \\
\frac{m_{a}^{2}}{h_{a}}=\frac{p(p-a)}{h_{a}}+\frac{(b-c)^{2}}{4 h_{a}} ; \frac{p(p-a)}{h_{a}}=\frac{a p(p-a)}{a h_{a}}=\frac{a(p-a) p}{2 s} \\
\sum \frac{p(p-a)}{h_{a}}=\sum \frac{a p(p-a)}{2 s}=\sum \frac{a p^{2}-a^{2} p}{2 s}=\frac{p^{2}(a+b+c)-p\left(a^{2}+b^{2}+c^{2}\right)}{2 s} \\
\sum \frac{p(p-a)}{h_{a}}=\frac{2 p^{3}-2 p\left(p^{2}-r^{2}+4 R r\right)}{2 s} ; a^{2}+b^{2}+c^{2}=2\left(p^{2}-r^{2}-4 R r\right) \\
\sum \frac{p(p-a)}{h_{a}}=\frac{2 p\left(p^{2}-p^{2}+r^{2}+4 R r\right)}{2 s r}=\frac{r(4 R+r)}{r}=4 R+r ; \text { So, } \sum \frac{m_{a}^{2}}{h_{a}}=\sum \frac{p(p-a)}{h_{a}}+\frac{1}{4} \cdot \sum \frac{(b-c)^{2}}{h_{a}} \\
\sum \frac{p(p-a)}{h_{a}}=4 R+r, \text { from the proven above the problem is proved. }
\end{gathered}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \text { LHS } \stackrel{m_{a} \geq \sqrt{s(s-a)}}{\geq} s \sum \frac{s-a}{b c}=\frac{s}{4 R r s} \sum a(s-a)=\frac{1}{4 R r}\left\{s(2 s)-2\left(s^{2}-4 R r-r^{2}\right)\right\}= \\
& =\frac{4 R+r}{2 R}=2+\frac{r}{2 R} \text { (Done) }
\end{aligned}
$$

888. In $\triangle A B C$ the following relationship holds:

$$
\begin{aligned}
\cos \frac{A-B}{2}+\cos \frac{B-C}{2}+\cos \frac{C-A}{2} & >\frac{1}{2}\left(\frac{h_{b}+h_{c}}{a}+\frac{h_{c}+h_{a}}{b}+\frac{h_{a}+h_{b}}{c}\right) \\
& \text { Proposed by Bogdan Fustei - Romania }
\end{aligned}
$$

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\text { RHS }=\sum \frac{1}{2}\left(\frac{c a+a b}{2 R a}\right)=\frac{1}{4 R} \sum(b+c)=\frac{2 \sum a}{4 R}=\frac{s}{R}=\frac{\Sigma a}{2 R}=\sum \sin A=\frac{1}{2} \sum(\sin A+\sin B)= \\
=\frac{1}{2} \sum 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}=\sum \cos \frac{C}{2} \cos \frac{A-B}{2} \leq \sum \cos \frac{A-B}{2}\left(\because \cos \frac{C}{2}, \text { etc } \leq 1\right) \\
\text { (proved) }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

889. In $\triangle A B C$ the following relationship holds:

$$
w_{a}+w_{b}+w_{c} \leq \sqrt{\left(r_{a}+r_{b}+r_{c}\right)\left(h_{a}+h_{b}+h_{c}\right)}
$$

Proposed by Bogdan Fustei - Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \sum w_{a}=\sum \frac{2 b c}{b+c} \cos \frac{A}{2}=\sum \frac{2 \sqrt{b c}}{b+c} \sqrt{s(s-a)} \stackrel{c-B-s}{\leq} 2 \sqrt{s} \sqrt{\sum b c} \sqrt{\sum \frac{s-a}{(b+c)^{2}}} \leq \\
& \stackrel{A-G}{\leq} 2 \sqrt{s} \sqrt{\sum a b} \sqrt{\sum \frac{s-a}{4 b c}}=\sqrt{s} \sqrt{\sum a b} \sqrt{\sum \frac{a(s-a)}{4 R r s}}= \\
& =\sqrt{\sum a b} \sqrt{\frac{s(2 s)-2\left(s^{2}-4 R r-r^{2}\right)}{4 R r}}=\sqrt{\sum a b} \sqrt{\frac{4 R+r}{2 R}}=\sqrt{\frac{\sum a b}{2 R}} \sqrt{\sum r_{a}}= \\
& =\sqrt{\left(\sum h_{a}\right)\left(\sum r_{a}\right)}\left(\because \frac{a b}{2 R}=h_{c}, \text { etc) } \quad\right. \text { (proved) }
\end{aligned}
$$

890. In $\triangle A B C$ the following relationship holds:

$$
b c \geq w_{a}^{2}\left(1+\left(\frac{a}{b+c}\right)^{2}\right)
$$

Proposed by Bogdan Fustei - Romania

Solution 1 by Radu Butelca-Romania

$$
\begin{aligned}
& \left.\begin{array}{c}
w_{a}=\frac{2 b c}{b+c} \cos \frac{A}{2} \\
\cos \frac{A}{2}=\sqrt{\frac{s(s-a)}{b c}}
\end{array}\right\} \Rightarrow w_{a}^{2}=\frac{b c\left[(b+c)^{2}-a^{2}\right]}{(b+c)^{2}} \\
& w_{a}^{2}\left[\frac{(b+c)^{2}+a^{2}}{(b+c)^{2}}\right] \stackrel{(1)}{=} \frac{b c\left[(b+c)^{2}-a^{2}\right]\left[(b+c)^{2}+a^{2}\right]}{(b+c)^{4}} \leq b c \\
& {\left[(b+c)^{2}-a^{2}\right]\left[(b+c)^{2}+a^{2}\right] \leq(b+c)^{4} \Leftrightarrow(b+c)^{4}-a^{4} \leq(b+c)^{4}} \\
& \Leftrightarrow a^{4} \geq 0 \text {, which is true because } a \text { is lenght of a triangle. }
\end{aligned}
$$

Solution 2 by Rajsekhar Azaad-India

$$
w_{a}^{2}=b c\left[1-\frac{a^{2}}{(b+c)^{2}}\right] \Rightarrow w_{a}^{2} \cdot\left(1+\frac{a^{2}}{(b+c)^{2}}\right)=b c\left[1-\frac{a^{2}}{(b+c)^{2}}\right]\left[1+\frac{a^{2}}{(b+c)^{2}}\right]=
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
=b c\left[1-\frac{a^{4}}{(b+c)^{4}}\right] \leq b c \quad \therefore \Rightarrow b c \geq w_{a}^{2}\left(1+\frac{a^{2}}{(b+c)^{2}}\right) \quad(\text { proved })
$$

891. In $\triangle A B C$ the following relationship holds:

$$
\begin{aligned}
15 r_{a}^{2}+10 r_{b}^{2}+ & 7 r_{c}^{2}>270 r^{2} \\
& \text { Proposed by Daniel Sitaru - Romania }
\end{aligned}
$$

Solution 1 by Marian Ursărescu - Romania

$$
\begin{equation*}
\text { From Cauchy's inequality } \Rightarrow \mathbf{1 5} r_{a}^{2}+10 r_{b}^{2}+\mathbf{7} r_{c}^{2}>\frac{\left(\sqrt{15} r_{a}+\sqrt{10} r_{b}+\sqrt{7} r_{c}\right)^{2}}{3} \tag{1}
\end{equation*}
$$

From (1) the inequality becomes: $\left(\sqrt{15} r_{a}+\sqrt{10} r_{b}+\sqrt{7} r_{c}\right)^{2}>3 \cdot 270 r^{2} \Leftrightarrow$

$$
\begin{equation*}
\Leftrightarrow \sqrt{15} r_{a}+\sqrt{10} r_{b}+\sqrt{7} r_{c}>9 \sqrt{10} r(2) \tag{3}
\end{equation*}
$$

We have: $r_{a}=s \boldsymbol{\operatorname { t a n }} \frac{A}{2}$ and $r=s \boldsymbol{\operatorname { t a n }} \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}$
From (2)+(3) we must show this:

$$
\begin{gather*}
\sqrt{15} s \tan \frac{A}{2}+\sqrt{10} s \tan \frac{B}{2}+\sqrt{7} s \tan \frac{C}{2}>9 \sqrt{10} s \tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2} \Leftrightarrow \\
\sqrt{15} \tan \frac{A}{2}+\sqrt{10} \tan \frac{B}{2}+\sqrt{7} \tan \frac{C}{2}>9 \sqrt{10} \tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2} \text { (4) } \tag{4}
\end{gather*}
$$

But $\sqrt{15} \boldsymbol{\operatorname { t a n }} \frac{A}{2}+\sqrt{\mathbf{1 0}} \boldsymbol{\operatorname { t a n }} \frac{B}{2}+\sqrt{7} \tan \frac{C}{2}>3 \sqrt[3]{\mathbf{5} \sqrt{\mathbf{4 2} \boldsymbol{\operatorname { t a n }} \frac{A}{2} \tan \frac{B}{2} \boldsymbol{\operatorname { t a n }} \frac{C}{2}}}$
From (4)+ (5) we must show:

$$
\begin{gather*}
3 \sqrt[3]{5 \sqrt{42} \tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}}>9 \sqrt{10} \tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2} \Leftrightarrow \\
\Leftrightarrow \sqrt[3]{5 \sqrt{42} \tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}}>3 \sqrt{10} \tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2} \Leftrightarrow \\
5 \sqrt{42} \tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}>3 \sqrt{3} \cdot 10 \sqrt{10} \tan ^{3} \frac{A}{2} \tan ^{3} \frac{B}{2} \tan ^{3} \frac{C}{2} \Leftrightarrow \\
\sqrt{7} \tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}>6 \sqrt{5} \tan ^{3} \frac{A}{2} \tan ^{3} \frac{B}{2} \tan ^{3} \frac{C}{2} \Leftrightarrow \\
\Leftrightarrow \tan ^{2} \frac{A}{2} \tan ^{2} \frac{B}{2} \tan ^{2} \frac{C}{2}<\frac{\sqrt{7}}{6 \sqrt{5}} \text { (6) } \tag{6}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

But in any $\triangle A B C$ we have relation: $\sum \tan \frac{A}{2} \tan \frac{B}{2}=1 \Rightarrow$

$$
\Rightarrow 1=\sum \tan \frac{A}{2} \tan \frac{B}{2} \geq 3 \sqrt[3]{\tan ^{2} \frac{A}{2} \tan ^{2} \frac{B}{2} \tan ^{2} \frac{C}{2}} \Rightarrow
$$

$$
\begin{gathered}
\Rightarrow \sqrt[3]{\tan ^{2} \frac{A}{2} \tan ^{2} \frac{B}{2} \tan \frac{C}{2}} \leq \frac{1}{3} \Leftrightarrow \tan ^{2} \frac{A}{2} \tan ^{2} \frac{B}{2} \tan ^{2} \frac{C}{2} \leq \frac{1}{27} \Leftrightarrow \tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2} \leq \\
\leq \frac{1}{3 \sqrt{3}}<\frac{\sqrt{7}}{6 \sqrt{5}} \Rightarrow(20<21)
\end{gathered}
$$

$$
6 \text { its true. Remark: } s=\frac{a+b+c}{2}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India
Given inequality $\Leftrightarrow s^{2}\left\{\frac{15}{(s-a)^{2}}+\frac{10}{(s-b)^{2}}+\frac{7}{(s-c)^{2}}\right\}>\frac{270 s^{2}}{s^{2}} \Leftrightarrow \frac{15}{(s-a)^{2}}+\frac{10}{(s-b)^{2}}+\frac{7}{(s-c)^{2}} \stackrel{(1)}{>} \frac{270}{s^{2}}$

$$
\text { Now, LHS of (1)= } \begin{aligned}
&(\sqrt[3]{15})^{3} \\
&(s-a)^{2}+\frac{(\sqrt[3]{10})^{2}}{(s-b)^{2}}+\frac{(\sqrt[3]{7})^{2}}{(s-c)^{2}} \operatorname{Radon}_{>} \frac{(\sqrt[3]{15}+\sqrt[3]{10}+\sqrt[3]{7})^{3}}{\{\Sigma(s-a)\}^{2}}>\frac{278}{s^{2}}>\frac{270}{s^{2}} \\
& \Rightarrow(1) \text { is true (Proved) }
\end{aligned}
$$

892. In acute $\triangle A B C$ the following relationship holds:

$$
a^{2}+b^{2}+c^{2} \geq 6 a b c \sqrt{\frac{6 \cos A \cos B \cos C}{a^{2}+b^{2}+c^{2}}}
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Serban George Florin-Romania

$$
\begin{gathered}
a^{2}+b^{2}+c^{2} \geq\left. 6 a b c \sqrt{\frac{6 \cos A \cos B \cos C}{a^{2}+b^{2}+c^{2}}}\right|^{2} \\
\left(a^{2}+b^{2}+c^{2}\right)^{2} \geq \frac{6^{2} a^{2} b^{2} c^{2} \cdot 6 \cos A \cos B \cos C}{a^{2}+b^{2}+c^{2}} \\
\left(a^{2}+b^{2}+c^{2}\right)^{3} \geq 6^{3} a^{2} b^{2} c^{2} \cos A \cos B \cos C \\
\left(a^{2}+b^{2}+c^{2}\right)^{3} \stackrel{M a \geq M g}{\geq}\left(3 \sqrt[3]{a^{2} b^{2} c^{2}}\right)^{3}=3^{3} a^{2} b^{2} c^{2} \geq 6^{3} a^{2} b^{2} c^{2} \cos A \cos B \cos C
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\Rightarrow \cos A \cos B \cos C \leq \frac{1}{8}, \sqrt[3]{\cos A \cos B \cos C} \leq \frac{1}{2}
$$

If $\triangle A B C$ is obtuse triangle $\Rightarrow \cos A \cos B \cos C<0<\frac{1}{8}$ (A)
If $\triangle A B C$ is a cute-angled.

$$
\begin{align*}
& \sqrt[3]{\cos A \cos B \cos C} \stackrel{(M g \leq M a)}{\leq} \frac{\cos A+\cos B+\cos C}{3} \leq \frac{1}{2} \Rightarrow \cos A+\cos B+\cos C \leq \frac{3}{2} \Rightarrow \\
& \Rightarrow 1+4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \leq \frac{3}{2} \Rightarrow \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \leq \frac{1}{8} \\
& \boldsymbol{\operatorname { s i n }} \frac{A}{2} \leq \frac{a}{2 \sqrt{b c}}, \Pi \sin \frac{A}{2} \leq \Pi \frac{a}{2 \sqrt{b c}}=\frac{1}{8} \tag{A}
\end{align*}
$$

Solution 2 by Marian Ursarescu-Romania
Inequality $\Leftrightarrow \sqrt{\left(a^{2}+b^{2}+c^{2}\right)^{3}} \geq 6 a b c \sqrt{6 \cos A \cos B \cos C} \Leftrightarrow$

$$
\begin{gather*}
\left(a^{2}+b^{2}+c^{2}\right)^{3} \geq 6^{3} \cdot a^{2} b^{2} c^{2} \cdot \cos A \cos B \cos C \tag{1}\\
a^{2}+b^{2}+c^{2}=2\left(s^{2}-r^{2}-4 R r\right) \quad \text { (2) } a b c=4 s R r \tag{3}\\
\cos A \cos B \cos C=\frac{s^{2}-(2 R+r)^{2}}{4 R^{2}}=\frac{s^{2}-4 R^{2}-4 R r-r^{2}}{4 R^{2}} \tag{4}
\end{gather*}
$$

From (1) + (2) + (3) + (4) we must show:

$$
\begin{align*}
& 8\left(s^{2}-r^{2}-4 R r\right)^{3} \geq 6^{3} \cdot 16 s^{2} R^{2} r^{2} \cdot \frac{s^{2}-4 R^{2}-4 R r-r^{2}}{4 R^{2}} \Leftrightarrow \\
& \Leftrightarrow\left(s^{2}-r^{2}-4 R r\right)^{3} \geq 108 s^{2} r^{2}\left(s^{2}-4 R^{2}-4 R r-r^{2}\right) \tag{5}
\end{align*}
$$

Now, use the Gerretsen inequality \Rightarrow

$$
\begin{equation*}
16 R r-5 r^{2} \leq s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \tag{6}
\end{equation*}
$$

From (5) + (6) we must show: $(2 R-r)^{3} \geq s^{2} r$
Now, from Gergonne's inequality: $s^{2} \leq \frac{R(4 R+r)^{2}}{2(2 R-r)}$
From (7) + (8) we must show:

$$
\begin{equation*}
(2 R-r)^{3} \geq \frac{R(4 R+r)^{2}}{2(2 R-r)} \Leftrightarrow(2 R-r)^{4} \geq \frac{R r}{2}(4 R+r)^{2} \tag{9}
\end{equation*}
$$

From Euler $R \geq 2 r$ (10). From (9) $+(10) \Leftrightarrow(2 R-r)^{4} \geq r^{2}(4 R+r)^{2} \Leftrightarrow$

$$
\Leftrightarrow(2 R r-r)^{2} \geq r(4 R+r) \Leftrightarrow R \geq 2 r \quad \text { (true) }
$$

Solution 3 by Soumava Chakraborty-Kolkata-India

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
\because \prod \cos A \leq \frac{1}{8}, \therefore \text { RHS } \leq 6 a b c \sqrt{\frac{3}{4 \sum a^{2}}} \stackrel{?}{\leq} \sum a^{2} \Leftrightarrow\left(\sum a^{2}\right)^{2} \stackrel{?}{\geq} 36 a^{2} b^{2} c^{2} \cdot \frac{3}{4 \sum a^{2}} \Leftrightarrow \\
\Leftrightarrow\left(\sum a^{2}\right)^{3} \geq 27 a^{2} b^{2} c^{2} \rightarrow \text { true (AM-GM) (Done) }
\end{gathered}
$$

Solution 4 by M yagmarsuren Yadamsuren-Darkhan-M ongolia

$$
\begin{gathered}
m_{a} \geq \sqrt{s(s-a), m_{b}} \geq \sqrt{s(s-b)} \text { and } m_{c} \geq \sqrt{s(s-c)} \text { and } a b c=4 R r s \text { then } \\
\sum_{c y c} \frac{m_{a}}{b c} \geq 3 \sqrt[3]{\frac{m_{a} m_{b} m_{c}}{a^{2} b^{2} c^{2}}} \geq 3 \sqrt[3]{\frac{s \Delta}{16 R^{2} r^{2} s^{2}}}=3 \sqrt[3]{\frac{s^{2} r}{16 R^{2} r^{2} s^{2}}} \geq 3 \sqrt[3]{\frac{1}{8 R^{2} \cdot R}}[\because R \geq 2 r] \\
=\frac{3}{2 R} \text { (proved) }
\end{gathered}
$$

Solution 5 by Soumitra Mandal-Chandar Nagore-India

$$
\begin{aligned}
& a^{2}+b^{2}+c^{2} \geq 6 a b c \sqrt{\frac{6 \cos A \cos B \cos C}{a^{2}+b^{2}+c^{2}}} \\
& \left(a^{2}+b^{2}+c^{2}\right)^{3} \geq 27 a^{2} b^{2} c^{2} \text { (true) } \\
& \left(a^{2}+b^{2}+c^{2}\right)^{2} \geq \frac{27 a^{2} b^{2} c^{2}}{a^{2}+b^{2}+c^{2}} \\
& a^{2}+b^{2}+c^{2} \geq 3 a b c \sqrt{\frac{3}{a^{2}+b^{2}+c^{2}}}=6 a b c \cdot \sqrt{\frac{6}{27} \cdot\left(\frac{3}{2}\right)^{3}} a^{2}+b^{2}+c^{2}- \\
& =6 a b c \sqrt{\frac{6\left(\frac{1+\frac{1}{2}}{3}\right)^{3}}{a^{2}+b^{2}+c^{2}}} \stackrel{\text { Euler }}{\geq} 6 a b c \sqrt{\frac{6\left(\frac{1+\frac{r}{R}}{3}\right)^{3}}{a^{2}+b^{2}+c^{2}}}= \\
& =6 a b c \sqrt{\frac{6\left(\frac{\cos A+\cos B+\cos C}{3}\right)^{3}}{a^{2}+b^{2}+c^{2}}} \stackrel{M a \geq M g}{\geq} 6 a b c \sqrt{\frac{6 \cos A \cos B \cos C}{a^{2}+b^{2}+c^{2}}} \\
& \cos A+\cos B+\cos C=1+\frac{r}{R} ; \frac{1}{2} \geq \frac{r}{R} \text { - Euler }
\end{aligned}
$$

Solution 6 by Sanong Huayrerai-Nakon Pathom-Thailand

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
b^{2}=c^{2}+a^{2}-2 \operatorname{cacos} B \\
c^{2}=a^{2}+b^{2}-2 a b \cos C \\
a^{2}+b^{2}+c^{2}=2(b c \cos A+\operatorname{cacos} B+a b \cos C) \\
\left(a^{2}+b^{2}+c^{2}\right)^{3}=(2(b c \cos A+c a \cos B+a b \cos C))^{3} \stackrel{A M-G M}{\geq} \\
\geq 8 \cdot 27 a b c \cdot a b c \cos A \cos B \cos C=6^{3}(a b c)^{2} \cos A \cos B \cos C \\
\left(a^{2}+b^{2}+c^{2}\right)^{2} \geq \frac{6^{3}(a b c)^{2} \cos A \cos B \cos C}{a^{2}+b^{2}+c^{2}} \\
a^{2}+b^{2}+c^{2} \geq 6 a b c \sqrt{\frac{6 \cos A \cos B \cos C}{a^{2}+b^{2}+c^{2}}}
\end{gathered}
$$

893. In $\triangle A B C$ the following relationship holds:

$$
\frac{h_{a}}{h_{b}+h_{c}}+\frac{h_{b}}{h_{c}+h_{a}}+\frac{h_{c}}{h_{a}+h_{b}}>\frac{1}{2}\left(\frac{w_{a}}{a}+\frac{w_{b}}{b}+\frac{w_{c}}{c}\right)
$$

Proposed by Bogdan Fustei - Romania

Solution by Serban George Florin - Romania

$$
\begin{gathered}
\sum \frac{h_{a}}{h_{b}+h_{c}}=\sum \frac{\frac{2 S}{a}}{\frac{2 S}{b}+\frac{2 S}{c}}=\sum \frac{b c}{a(b+c)} \\
\frac{1}{2} \sum \frac{w_{a}}{a}=\frac{1}{2} \sum \frac{2 b c \cos \frac{A}{2}}{a(b+c)}=\sum \frac{b \cos \frac{A}{2}}{a(b+c)} \\
\frac{1}{2} \sum \frac{w_{a}}{a}= \\
\sum \frac{b c \cos \frac{A}{2}}{a(b+c)}<\sum \frac{b c}{a(b+c)}=\sum \frac{h_{a}}{h_{b}+h_{c}} \\
\left(\cos \frac{A}{2}, \cos \frac{B}{2}, \cos \frac{c}{2}<1\right) \text { true }
\end{gathered}
$$

894. If $m>0$ then in $\triangle A B C$ the following relationship holds:

$$
\cot ^{m+1} \frac{A}{2}+\cot ^{m+1} \frac{B}{2}+\cot ^{m+1} \frac{C}{2} \geq 3^{\frac{m+3}{2}}
$$

Proposed by D.M.Batinetu-Giurgiu, Neculai Stanciu-Romania

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \cot ^{m+1} \frac{A}{2}+\cot ^{m+1} \frac{B}{2}+\cot ^{m+1} \frac{C}{2}=\sum \frac{\cot ^{m+1} \frac{A_{\text {RADON }}}{2}}{1^{m}} \stackrel{\text { n }}{\geqq}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3^{m \cdot 3 \cdot 3} \frac{3^{\frac{m+1}{2}}}{3^{m}}=3^{\frac{m+3}{2}} ;\left(f:(0, \pi) \rightarrow \mathbb{R}, f(x)=\cot \frac{x}{2}, f-\text { convexe }\right),}{}
\end{aligned}
$$

895. In $\triangle A B C$ the following relationship holds:

$$
\frac{b c}{a w_{a}}+\frac{c a}{b w_{b}}+\frac{a b}{c w_{c}} \leq \frac{9 R^{2}}{2 S}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution by Daniel Sitaru-Romania

$$
\begin{gathered}
\frac{1}{a w_{a}}=\frac{1}{\frac{2 a b c}{b+c} \cos \frac{A}{2}}=\frac{1}{\frac{b c}{2 R \cos \frac{B-C}{2}}}=\frac{2 R \cos \frac{B-C}{2}}{b c}=\frac{\cos \frac{B-C}{2}}{2 S} \leq \frac{1}{2 S}(1) \\
\sum \frac{b c}{a w_{a}} \stackrel{(1)}{\leq} \sum \frac{b c}{2 S} \leq \frac{1}{2 S} \sum a^{2} \stackrel{L E I B N I Z}{\stackrel{2}{\leq}} \frac{9 R^{2}}{2 S}
\end{gathered}
$$

896. If in $\triangle A B C, \sin A \sin B \sin C=\frac{1}{8 R^{3}}$ then:

$$
\frac{a b}{a^{5}+b^{5}+c^{2}}+\frac{b c}{b^{5}+c^{5}+a^{2}}+\frac{c a}{c^{5}+a^{5}+b^{2}} \leq\left(\frac{a+b+c}{3}\right)^{10}
$$

Proposed by Nguyen Van Nho-Nghe An-Vietnam
Solution by Daniel Sitaru-Romania

$$
\sin A \sin B \sin C=\frac{1}{8 R^{3}} \rightarrow a b c=1 ; \sum \frac{a b}{a^{5}+b^{5}+c^{2}} \stackrel{A M-G M}{\leftrightarrows} \sum \frac{a b}{3 \sqrt[3]{a^{5} b^{5} c^{2}}}=
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

897. In $\triangle A B C$ the following relationship holds:

$$
\frac{a^{2}}{h_{b}+h_{c}}+\frac{b^{2}}{h_{c}+h_{a}}+\frac{c^{2}}{h_{a}+h_{b}} \geq 6 r
$$

Proposed by Seyran Ibrahimov-M aasilli-Azerbaidian

Solution by Daniel Sitaru-Romania

$$
\begin{gathered}
\sum \frac{a^{2}}{h_{b}+h_{c}}=\frac{4 R\left(s^{2}-r^{2}-R r\right)}{s^{2}+r^{2}+2 R r} \stackrel{\text { GERRETSEN }}{\gtrless} \frac{4 R\left(16 R r-5 r^{2}-r^{2}-R r\right)}{4 R^{2}+4 R r+3 r^{2}+r^{2}+2 R r}= \\
=\frac{4 R\left(15 R r-6 r^{2}\right)}{4 R^{2}+6 R r+4 r^{2}} \stackrel{\text { EULER }}{\gtrless} \frac{4 R\left(15 R r-6 r \cdot \frac{R}{2}\right)}{4 R^{2}+6 R \cdot \frac{R}{2}+4 \cdot \frac{R^{2}}{4}}=\frac{48 R r}{8 R^{2}}=6 r
\end{gathered}
$$

898. In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a}}{b c}+\frac{m_{b}}{c a}+\frac{m_{c}}{a b} \geq \frac{3}{2 R}
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Bogdan Fustei-Romania
$b c=2 R h_{a}$ (and the analogs); The inequality from enunciation becomes:

$$
\frac{1}{2 R}\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right) \geq \frac{3}{2 R} \Rightarrow \frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}} \geq 3
$$

$m_{a} \geq h_{a}$ (and the analogs) $\Rightarrow \frac{m_{a}}{h_{a}} \geq 1$ (and the analogs) so, $\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}} \geq 3$ true and the inequality from enuciation is proved
Solution $\mathbf{2}$ by Mehmet Sahin-Ankara-Turkey

$$
\begin{gathered}
\frac{m_{a}}{b c}+\frac{m_{b}}{c a}+\frac{m_{c}}{a b}=\frac{a m_{a}+b m_{b}+c m_{c}}{a b c} . \text { Let } T=a m_{b}+b m_{b}+c m_{c} ; T \geq 3 \sqrt[3]{a b c \cdot m_{a} m_{b} m_{c}} \text { and } \\
\quad m_{a} \geq \sqrt{s(s-a)} ; T \geq 3 \sqrt[3]{4 R \Delta \sqrt{s(s-a)} \cdot \sqrt{s(s-a)} \cdot \sqrt{s(s-a)}} ; T \geq 3 \sqrt[3]{4 R \Delta \cdot s \Delta}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
T \geq 3 \sqrt[3]{4 \cdot 2 r \cdot r \cdot s \cdot r \cdot r \cdot s}=6 r s ; \frac{T}{a b c} \geq \frac{6 s}{4 R \Delta}=\frac{6}{4 R}=\frac{3}{2 R}: .
$$

Solution 3 by Seyran Ibrahimov-M aasilli-Azerbaidian

$$
\begin{gathered}
\sum \frac{m_{a}}{b c} \geq \frac{3}{2 R} \text { (1) } \\
m_{a} \geq \frac{b^{2}+c^{2}}{4 R} \text { (Tereshin) } \\
\text { (1) } \Rightarrow \frac{1}{4 R} \sum \frac{b^{2}+c^{2}}{b c} \stackrel{A M-G M}{\geq} \frac{1}{4 R} \cdot 6=\frac{3}{2 R} \text { (proved) }
\end{gathered}
$$

899. If $M \in \operatorname{Int}(\triangle A B C), A M=x, B M=y, C M=z$ then:

$$
\frac{a x}{a x+b y+98 c z}+\frac{b y}{b y+c z+98 a x}+\frac{c z}{c z+a x+98 b y} \geq \frac{3}{100}
$$

Proposed by Daniel Sitaru-Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
a x=u, b y=v, c z=w
$$

The inequality to prove can be written:

$$
\begin{gathered}
\sum \frac{u}{u+v+98 w} \geq \frac{3}{100} \leftrightarrow 100 \sum u(v+w+98 u)(w+u+98 v) \geq 3 \prod(u+v+98 w) \\
9506 \sum u^{3}+931491 \sum u^{2} v \geq 2794764 u v w+9409 \sum u v^{2}(a) \\
u^{3}+v^{3}+v^{3} \stackrel{A M-G M}{\geq} 3 u v^{2} \\
v^{3}+w^{3}+w^{3} \stackrel{A M-G M}{\geq} 3 v w^{2} \\
w^{3}+u^{3}+u^{3} \stackrel{A M-G M}{\geq} 3 w u^{2} \\
\sum u^{3} \geq \sum u v^{2} \rightarrow 9506 \sum u^{3} \geq 9506 \sum u v^{2}(1) \\
97 \sum u v^{2} \stackrel{A M-G M}{\Omega} 291 u v w(2) \\
931491 \sum u^{2} v \stackrel{A M-G M}{\geq} 2794473 u v w(3)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

By adding (1), (2),(3) $\rightarrow(a)$
900. In $\triangle A B C$ the following relationship holds:

$$
\sqrt{2}\left(\frac{1}{a} \cos \frac{A}{2}+\frac{1}{b} \cos \frac{B}{2}+\frac{1}{b} \cos \frac{C}{2}\right) \leq \sqrt{s\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{w_{a}^{2}}+\frac{1}{w_{b}^{2}}+\frac{1}{w_{c}^{2}}\right)}
$$

Proposed by Bogdan Fustei - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \sqrt{2} \sum \frac{\cos \frac{A}{2}}{a} \leq \sqrt{s\left(\sum \frac{1}{a}\right)\left(\sum \frac{1}{w_{a}^{2}}\right)} \\
& w_{a}^{2} \leq s(s-a), \text { etc, } \therefore \frac{1}{w_{a}^{2}} \geq \frac{1}{s(s-a)}, \text { etc. } \\
& \therefore \sum \frac{1}{w_{a}^{2}} \stackrel{(1)}{\geq} \frac{1}{s} \sum \frac{1}{s-a}=\frac{\sum(s-b)(s-c)}{r^{2} s^{2}}=\frac{3 s^{2}-s(4 s)+s^{2}+4 R r+r^{2}}{r^{2} s^{2}}= \\
& =\frac{4 R+r}{r s^{2}} \\
& \therefore\left(\sum \frac{1}{a}\right)\left(\sum \frac{1}{w_{a}^{2}}\right) \stackrel{b y(1)}{\geq} \frac{\sum a b}{4 R r s} \cdot \frac{4 R+r}{r s^{2}}=\frac{\left(\sum a b\right)(4 R+r)}{4 R r^{2} s^{3}} \Rightarrow \\
& \Rightarrow R H S=\sqrt{s\left(\sum \frac{1}{a}\right)\left(\sum \frac{1}{w_{a}^{2}}\right)} \stackrel{(a)}{\geq} \sqrt{\frac{\left(\sum a b\right)(4 R+r)}{4 R r^{2} s^{2}}} \text {. Now, LHS } \stackrel{C B S}{\leq} \sqrt{2} \sqrt{\sum \frac{1}{a^{2}}} \sqrt{\sum \cos ^{2} \frac{A}{2}} \leq
\end{aligned}
$$

(a), (b) \Rightarrow it suffices to prove: $\frac{1}{4 R r^{2}} \leq \frac{\sum a b}{4 R r^{2} s^{2}} \Leftrightarrow \sum a b \geq s^{2} \Leftrightarrow 4 R r+r^{2} \geq 0 \rightarrow$ true (proved)

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Its nice to be important but more important its to be nice.
At this paper works a TEAM.
This is RMM TEAM.
To be continued!
Daniel Sitaru

