

Number 10

Autumn 2018

R M M

ROMANIAN MATHEMATICAL MAGAZINE

Founding Editor
DANIEL SITARU

Available online
www.ssmrmh.ro

ISSN-L 2501-0099

PROBLEMS FOR JUNIORS

JP.136. Let x, y, z be positive real numbers such that: $xyz = 1$. Find the maximum of the expression:

$$Q = \frac{1}{\sqrt[3]{2x^5 + y^4 - x^2 + 4}} + \frac{1}{\sqrt[3]{2y^5 + z^4 - y^2 + 4}} + \frac{1}{\sqrt[3]{2z^5 + x^4 - z^2 + 4}}$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

JP.137. Let $x, y \geq 1$. Prove that:

$$\sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} \geq 2 + \frac{4(x-y)^2}{(2x+xy+1)(2y+xy+1)}$$

Proposed by Andrei Stefan Mihalcea - Romania

JP.138. Let $a, b, c > 0$, with $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1$. Prove that:

$$(4a-3)(4b-3)(4c-3) \geq 243\sqrt[3]{abc}$$

Proposed by Andrei Stefan Mihalcea - Romania

JP.139. Let x, y, z be positive real numbers such that: $x^2 + y^2 + z^2 = 3$. Find the minimum of the expression:

$$P = \frac{x}{\sqrt[4]{\frac{y^8+z^8}{2} + 3yz}} + \frac{y}{\sqrt[4]{\frac{z^8+x^8}{2} + 3zx}} + \frac{z}{\sqrt[4]{\frac{x^8+y^8}{2} + 3xy}}$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

JP.140. Let $a, b, c > 0$. Prove that:

$$\sum \frac{\sqrt{a+b}}{a} \leq \left(\sum \frac{1}{a} \right) \sqrt{\sum a - \frac{\sum ab}{\sum a}}$$

Proposed by Andrei Stefan Mihalcea - Romania

JP.141. Let $a, b, c > 0$. Prove that:

$$\left(\sum \sqrt{\frac{b+c}{a}} \right)^2 \leq \frac{2(\sum ab)^3}{3a^2b^2c^2}$$

Proposed by Andrei Stefan Mihalcea - Romania

JP.142. Let $a, b, c \geq 1$. Prove that:

$$\sum \sqrt{\frac{a-1}{bc}} \leq \left(\sum \frac{1}{ab} \right) \sqrt{abc - \frac{\sum a}{3}}$$

Proposed by Andrei Stefan Mihalcea - Romania

JP.143. In any ABC triangle the following relationship holds:

$$\frac{w_a^2}{h_b \cdot h_c} + \frac{w_b^2}{h_c \cdot h_a} + \frac{w_c^2}{h_a \cdot h_b} \leq \left(\frac{R}{r} \right)^2 - 1$$

all notations are usual sense.

Proposed by Mehmet Şahin - Ankara - Turkey

JP.144. In any ABC triangle the following relationship holds:

$$\frac{a}{w_a} + \frac{b}{w_b} + \frac{c}{w_c} \geq \frac{4s}{3R}$$

Proposed by Mehmet Şahin - Ankara - Turkey

JP.145. In any ABC triangle the following relationship holds:

$$\frac{m_a}{r+r_a} + \frac{m_b}{r+r_b} + \frac{m_c}{r+r_c} \leq \frac{s}{2r}$$

all notations are usual sense.

Proposed by Mehmet Şahin - Ankara - Turkey

JP.146. Let x, y, z be positive real numbers such that: $xyz = 1$. Find the maximum of the expression:

$$P = \frac{1}{\sqrt[3]{2(x^5 - x^3 + 4)}} + \frac{1}{\sqrt[3]{2(y^5 - y^3 + 4)}} + \frac{1}{\sqrt[3]{2(z^5 - z^3 + 4)}}$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

JP.147. Let a, b, c be positive real numbers such that:

$a^2 + b^2 + c^2 = 3abc$. Find the minimum of the expression:

$$P = \frac{a^2}{\sqrt[3]{4(b^3 + c^3)}} + \frac{b^2}{\sqrt[3]{4(c^3 + a^3)}} + \frac{c^2}{\sqrt[3]{4(a^3 + b^3)}}$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

JP.148. Let a, b, c be positive real numbers such that:

$ab + bc + ca = 12$. Prove that:

$$\frac{a^3 + b^3}{2b^2 - bc + 2c^2} + \frac{b^3 + c^3}{2c^2 - ca + 2a^2} + \frac{c^3 + a^3}{2a^2 - ab + 2b^2} \geq 4$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

JP.149. Find all functions: $f : (0, +\infty) \rightarrow \mathbb{R}$ which verify the relationship:

$$\ln(xy) \leq xf(x) + yf(y) \leq xyf(xy), \forall x, y > 0$$

Proposed by Marian Ursărescu - Romania

JP.150. Let be $z_1, z_2, z_3 \in \mathbb{C}^*$ different in pairs such that $|z_1| = |z_2| = |z_3|$. If $(z_1 + z_2)(z_2 + z_3)(z_3 + z_1) + z_1 z_2 z_3 = 0$, then z_1, z_2, z_3 are the affixes of an equilateral triangle.

Proposed by Marian Ursărescu - Romania

PROBLEMS FOR SENIORS

SP.136. Let x, y, z be positive real numbers such that:

$x^4 + y^4 + z^4 = xy + yz + zx$. Find the maximum of the expression:

$$P = \sqrt[3]{\frac{x^6 + y^6}{2}} + \sqrt[3]{\frac{y^6 + z^6}{2}} + \sqrt[3]{\frac{z^6 + x^6}{2}}$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

SP.137. Let $a, b, c > 0$ such that: $a + b + c = 3$. Prove that:

$$\begin{aligned} \frac{a}{\sqrt[3]{4(b^6 + c^6)} + 7bc} + \frac{b}{\sqrt[3]{4(c^6 + a^6)} + 7ca} + \frac{c}{\sqrt[3]{4(a^6 + b^6)} + 7ab} + \\ + \frac{\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c}}{12} \geq \frac{7}{12} \end{aligned}$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

SP.138. Let a, b, c be positive real numbers such that: $a+b+c = 3$.

Prove that:

$$\frac{a^2}{\sqrt{5(b^4 + 4)}} + \frac{b^2}{\sqrt{5(c^4 + 4)}} + \frac{c^2}{\sqrt{5(a^4 + 4)}} \geq \frac{3}{5}$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

SP.139. In ABC triangle the lengths of sides BC, CA, AB are a, b, c . Let h_a, h_b, h_c be the distances from A, B, C to BC, CA, AB ; l_a, l_b, l_c are the lengths of the bisectors A, B, C . Prove that:

$$\frac{l_a l_b}{l_c} + \frac{l_b l_c}{l_a} + \frac{l_c l_a}{l_b} \geq \frac{h_a h_b}{h_c} + \frac{h_b h_c}{h_a} + \frac{h_c h_a}{h_b}$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

SP.140. Let a, b, c be positive real numbers. Prove that:

$$\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} \geq \frac{4(a^2 + b^2 + c^2)}{ab + bc + ca} + \frac{2(ab + bc + ca)}{a^2 + b^2 + c^2}$$

Proposed by Hoang Le Nhat Tung – Hanoi – Vietnam

SP.141. Let $a, b, c > 0$ such that: $a + b + c = 3$. Prove that:

$$\begin{aligned} \frac{a^4}{b^4(2ab - \sqrt{c} + 2)} + \frac{b^4}{c^4(2bc - \sqrt{a} + 2)} + \frac{c^4}{a^4(2ca - \sqrt{b} + 2)} &\geq \\ &\geq \frac{a^2 + b^2 + c^2}{3} \end{aligned}$$

Proposed by Hoang Le Nhat Tung – Hanoi – Vietnam

SP.142. Let a, b, c be positive real numbers such that: $abc = 1$. Prove that:

$$\begin{aligned} \frac{a^2b^2}{a^4 - 2a + b^2 + 2} + \frac{b^2c^2}{b^4 - 2b + c^2 + 2} + \frac{c^2a^2}{c^4 - 2c + a^2 + 2} &\leq \\ &\leq \frac{a^2 + b^2 + c^2 + 3}{4} \end{aligned}$$

Proposed by Hoang Le Nhat Tung – Hanoi – Vietnam

SP.143. Let x, y, z be non-negative real numbers. Prove that:

$$x\sqrt{3x^2 + yz} + y\sqrt{3y^2 + zx} + z\sqrt{3z^2 + xy} \geq x^2 + y^2 + z^2 + xy + yz + zx$$

Proposed by Do Quoc Chinh - Ho Chi Minh - Vietnam

SP.144. Let A, B, C be the corners in a triangle ABC . Prove that:

$$\left(\frac{\sin \frac{A}{2}}{\tan \frac{B}{2}} \right)^2 + \left(\frac{\sin \frac{B}{2}}{\tan \frac{C}{2}} \right)^2 + \left(\frac{\sin \frac{C}{2}}{\tan \frac{A}{2}} \right)^2 \geq \frac{9}{4}$$

Proposed by Hoang Le Nhat Tung – Hanoi – Vietnam

SP.145. If $1 < a \leq b$ then:

$$\int_a^b \int_a^b \int_a^b \frac{dxdydz}{1 + \sqrt[3]{xyz}} \leq \log \left(\sqrt[3]{\frac{b+1}{a+1}} \right)^{(b-a)^2}$$

Proposed by Daniel Sitaru - Romania

SP.146. Let be $A, B \in M_3(\mathbb{R})$ such that:

$$AB = \begin{pmatrix} 2 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

Find: $\det((BA)^2 - 3I_3)$.

Proposed by Marian Ursărescu - Romania

SP.147. Find all continuous functions $f : \mathbb{R} \rightarrow \mathbb{R}$ having the property:

$$f(x) + 2f(2x) + f(4x) = 25x^2 + 9x + 4, \forall x \in \mathbb{R}.$$

Proposed by Marian Ursărescu - Romania

SP.148. Let be $x_0 > 0$ and $x_{n+1} = \arctan \frac{x_n}{1+x_n}, \forall n \in \mathbb{N}$. Find: $\lim_{n \rightarrow \infty} n \cdot x_n$.

Proposed by Marian Ursărescu - Romania

SP.149. Let be the sequence $(x_n)_{n \in \mathbb{N}} : x_0 > 1$ and $x_{n+1} = 1 + \ln \left(\frac{2x_n}{1+x_n} \right), \forall n \in \mathbb{N}$. Find: $\lim_{n \rightarrow \infty} n \ln x_n$.

Proposed by Marian Ursărescu - Romania

SP.150. Let be $f \in \mathbb{Z}$, $f = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, such that $a_1, a_2, \dots, a_n \in \{\pm 1, \pm 2, \dots, \pm n\}$. If a_0 is a prime number, $a_0 > n^2$ then f is irreducible over \mathbb{Z} .

Proposed by Marian Ursărescu - Romania

UNDERGRADUATE PROBLEMS

UP.136. Prove that:

$$\sum_{k=0}^n T_{4k}(x) = \frac{1}{4} \left[\frac{2 + U_{4n+2}(x)}{x\sqrt{1-x^2}} \right]$$

where, $T_n(x)$ and $U_n(x)$ denotes the Chebyshev Polynomials of first and second kind.

Proposed by Shivam Sharma - New Delhi - India

UP.137. Let $f, g : \mathbb{R}_+^* \rightarrow \mathbb{R}_+^*$ be functions such that:

$$\lim_{x \rightarrow \infty} (f(x+1) - f(x)) = a \in \mathbb{R}_+^*, \lim_{x \rightarrow \infty} \frac{g(x+1)}{xg(x)} = b \in \mathbb{R}_+^* \text{ and}$$

exists $\lim_{x \rightarrow \infty} \frac{f(x)}{x}$ and $\lim_{x \rightarrow \infty} \frac{(g(x))^{\frac{1}{x}}}{x}$. For $t \in \mathbb{R}$ calculate the limit:

$$\lim_{x \rightarrow \infty} (f(x))^{\cos^2 t} \left((g(x))^{\frac{\sin^2 t}{x+1}} - (g(x))^{\frac{\sin^2 t}{x}} \right)$$

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania

UP.138. Let $f, g : \mathbb{R}_+^* \rightarrow \mathbb{R}_+^*$ such that:

$$\lim_{x \rightarrow \infty} (f(x+1) - f(x)) = a \in \mathbb{R}_+^*, \lim_{x \rightarrow \infty} \frac{g(x+1)}{xg(x)} = b \in \mathbb{R}_+^* \text{ and exists}$$

$$\lim_{x \rightarrow \infty} \frac{f(x)}{x}, \lim_{x \rightarrow \infty} \frac{(g(x))^{\frac{1}{x}}}{x}. \text{ For } t \in \mathbb{R}, \text{ calculate:}$$

$$\lim_{x \rightarrow \infty} (f(x))^{\sin^2 t} \left((g(x))^{\frac{\cos^2 t}{x+1}} - (g(x))^{\frac{\cos^2 t}{x}} \right)$$

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania

UP.139. Calculate:

$$\lim_{x \rightarrow \infty} \left(x^{\cosh^2 t} \left((\Gamma(x+1))^{-\frac{\sinh^2 t}{x}} - ((\Gamma(x+2))^{-\frac{\sinh^2 t}{x+1}}) \right) \right)$$

where $t \in \mathbb{R}$ and Γ is the Gamma function (Euler integral of the second kind).

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania

UP.140. Calculate:

$$\lim_{x \rightarrow \infty} \left(x^{\sin^2 t} \left(((\Gamma(x+2))^{\frac{\cos^2 t}{x+1}} - ((\Gamma(x+1))^{\frac{\cos^2 t}{x}}) \right) \right)$$

where $t \in \mathbb{R}$ and Γ is the Gamma function (Euler integral of the second kind).

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania

UP.141. For $\{a_n\}_{n \geq 0}$, $a_n = \frac{(n+2)^{n+1}}{(n+1)^n}$, $x \in (-\infty, \infty)$, $\{b_n(x)\}_{n \geq 1}$, $b_n(x) = n^{\sin^2 x} (a_{n+1}^{\cos^2 x} - a_n^{\cos^2 x})$, find $\lim_{n \rightarrow \infty} b_n(x)$.

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania

UP.142. Let $(x_n)_{n \geq 1}$ be a sequence which satisfy:

$$-\ln(mn + x_n) + \sum_{k=1}^{mn} \frac{1}{k} = \gamma$$

where m is positive integer and γ is Euler-Mascheroni's constant.
Compute: $\lim_{n \rightarrow \infty} x_n$.

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania

UP.143. Let $a, b \in \mathbb{R}_+$, $\gamma_n(a, b) = -\ln(n + a) + \sum_{k=1}^n \frac{1}{k+b}$ with $\lim_{n \rightarrow \infty} \gamma_n(a, b) = \gamma(a, b) \in \mathbb{R}$. Calculate:

$$\lim_{n \rightarrow \infty} \left(\ln \frac{e}{n+a} + \sum_{k=1}^n \frac{1}{k+b} - \gamma(a, b) \right)^n.$$

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania

UP.144. If $x, y, z \geq 0$ then:

$$\cosh^2 x \cosh^2 y \cosh^2 z \geq 2(1 + \cosh(x-y) + \cosh(y-z) + \cosh(z-x)) \cdot \sinh \frac{x+y}{2} \sinh \frac{y+z}{2} \sinh \frac{z+x}{2}$$

Proposed by Mihály Bencze - Romania

UP.145. Let be $(x_n)_{n \geq 1}$, $x_n \in \mathbb{R}_+^*$, $\forall n \in \mathbb{N}^*$, such that exists

$$\lim_{n \rightarrow \infty} (x_{n+1} - x_n) = x \in \mathbb{R}_+^*. \text{ Find:}$$

$$\lim_{n \rightarrow \infty} \left(\frac{(n+1)x_{n+1}}{\sqrt[n+1]{(2n+1)!!}} - \frac{nx_n}{\sqrt[n]{(2n-1)!!}} \right)$$

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania

UP.146. Let $f : (0, \infty) \rightarrow (0, \infty)$ be a function with

$\lim_{x \rightarrow \infty} \frac{f(x)}{x} = a \in (0, \infty)$ and $t \in \mathbb{R}$. Find:

$$\lim_{n \rightarrow \infty} \left((n+1)^{\sin^2 t} \cdot \sqrt[n+1]{(f(1)f(2) \dots f(n)f(n+1))^{\cos^2 t}} - n^{\sin^2 t} \cdot \sqrt[n]{(f(1)f(2) \dots f(n))^{\cos^2 t}} \right)$$

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania

UP.147. In an ABC triangle let be a, b, c the lengths of BC, CA, AB , and r_a, r_b, r_c exradii. Prove that:

$$\frac{r_a^2}{\tan \frac{B}{2} \tan \frac{C}{2}} + \frac{r_b^2}{\tan \frac{C}{2} \tan \frac{A}{2}} + \frac{r_c^2}{\tan \frac{A}{2} \tan \frac{B}{2}} \geq \frac{9(a^2 + b^2 + c^2)}{4}$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

UP.148. Let a, b, c be positive real numbers such that: $a+b+c = 3$.
 Prove that: $2(a^2 + b^2 + c^2) + 3 \geq 3\sqrt{3abc(a^3b + b^3c + c^3a)}$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

UP.149. Prove that:

$$\begin{aligned} & \sum_{k=-l}^l \left[(-1)^k \binom{2l}{l+k} \binom{2m}{m+k} \binom{2n}{n+k} \right] = \\ & = \frac{(l+m+n)!(2l)!(2m)!(2n)!}{(l+m)!(l+n)!(m+n)!(l)!(m)!(n)!} \end{aligned}$$

Proposed by Shivam Sharma - New Delhi - India

UP.150. Determine all continuous functions $f : \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x+y) = f(x) + f(y) + xy$ and $f(1) = 1$ for all $x, y \in \mathbb{R}$.

Proposed by Mihály Bencze - Romania

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC, COLLEGE DROBETA TURNU - SEVERIN, MEHEDINTI, ROMANIA