

USING INEQUALITY TO SOLVE THE EQUATION

Hoang Le Nhat Tung ,
(Student K61 Math, Hanoi, Vietnam)

- The equation is a familiar and frequent mathematical formula used in secondary mathematics tests. The solution of the equation includes many methods such as: hidden sub, multiplication, In this article, I would like to exploit a method that is: use inequalities.
- Method: Experiment of the equation (usually the only solution). Then use the common inequalities such as Cauchy (AM-GM), Bunhiacopxki, Mincopxki to evaluate the equation and satisfy the '=' equation.
- Following are some examples:

Example 1. Solve the equation : $\sqrt{x} + \sqrt{x^2 - x + 1} = x^2 - x + 2$ (1)

My solution. $x \geq 0$. Easy to see : $x = 1$ is the solution (1). Therefore, $x^2 - x + 1 = \left(x - \frac{1}{2}\right)^2 + \frac{3}{4} > 0$, The left-hand side equation contains the square root which should apply the AM-GM inequality to the two nonnegative numbers: $\sqrt{x} + \sqrt{x^2 - x + 1} = \sqrt{x \cdot 1} + \sqrt{(x^2 - x + 1) \cdot 1} \leq \frac{x+1}{2} + \frac{(x^2 - x + 1) + 1}{2} = \frac{x^2 + 3}{2}$

+ Let (1): $\Rightarrow x^2 - x + 2 \leq \frac{x^2 + 3}{2} \Leftrightarrow 2x^2 - 2x + 4 \leq x^2 + 3 \Leftrightarrow x^2 - 2x + 1 \leq 0 \Leftrightarrow (x-1)^2 \leq 0$

$$\Rightarrow \begin{cases} (x-1)^2 = 0 \\ x=1 \Leftrightarrow x=1 \text{ (satisfy) . Therefore } S = \{1\} \text{ is the only solution of the problem. .} \\ x^2 - x + 1 = 1 \end{cases}$$

Example 2. Solve the equation : $16x^4 + 5 = 6\sqrt[3]{4x^3 + x}$ (2)

My solution. Because $16x^4 + 5 \geq 5 > 0$ then let (2): $\Rightarrow 4x^3 + x > 0 \Leftrightarrow x(4x^2 + 1) > 0 \Leftrightarrow x > 0$.

+ We see: $x = \frac{1}{2}$ is the solution (2). Therefore , by AM-GM inequality for three positive real

numbers we have : $6\sqrt[3]{4x^3 + x} = 3\sqrt[3]{2 \cdot 4x \cdot (4x^2 + 1)} \leq 2 + 4x + (4x^2 + 1) = 4x^2 + 4x + 3$

+ Let (3): $\Rightarrow 16x^4 + 5 \leq 4x^2 + 4x + 3 \Leftrightarrow 16x^4 - 4x^2 - 4x + 2 \leq 0 \Leftrightarrow 8x^4 - 2x^2 - 2x + 1 \leq 0$

$\Leftrightarrow 4x^3(2x-1) + 2x^2(2x-1) - (2x-1) \leq 0 \Leftrightarrow (2x-1)(4x^3 + 2x^2 - 1) \leq 0 \Leftrightarrow (2x-1)^2(2x^2 + x + 1) \leq 0$

$\Leftrightarrow (2x-1)^2 \leq 0 \Rightarrow (2x-1)^2 = 0$ (because $x > 0$ then $2x^2 + x + 1 > 0$) . Therefore, equation occurs if

$$\begin{cases} (2x-1)^2 = 0 \\ 2 = 4x = 4x^2 + 1 \end{cases} \Leftrightarrow \begin{cases} 2x-1=0 \\ x=\frac{1}{2} \end{cases} \Leftrightarrow x=\frac{1}{2} \text{ (satisfy)}$$

Therefore $S = \left\{ \frac{1}{2} \right\}$ is the only solution of the problem.

Example 3. Solve the equation : $\sqrt{x^3 + 2x} + \sqrt{3x-1} = \sqrt{x^3 + 4x^2 + 4x + 1}$ (3)

$$\text{My solution:} \begin{cases} x^3 + 2x \geq 0 \\ 3x - 1 \geq 0 \\ x^3 + 4x^2 + 4x + 1 \geq 0 \end{cases} \Leftrightarrow \begin{cases} x(x^2 + 2) \geq 0 \\ x \geq \frac{1}{3} \\ (x+1)(x^2 + 3x + 1) \geq 0 \end{cases} \Leftrightarrow x \geq \frac{1}{3}.$$

$$(3) \Leftrightarrow \sqrt{x(x^2 + 2)} + \sqrt{3x-1} = \sqrt{(x+1)(x^2 + 3x + 1)} \quad (4)$$

+ We see that the expression on the left side (4) is the sum of two roots of the second order, noting that: $(\sqrt{x})^2 + 1^2 = x + 1$ và $(\sqrt{x^2 + 2})^2 + (\sqrt{3x-1})^2 = x^2 + 3x + 1$ are 2 terms in the right hand side. Therefore by Bunhiacopxki inequality we have :

$$(\sqrt{x(x^2 + 2)} + 1 \cdot \sqrt{3x-1})^2 \leq [(\sqrt{x})^2 + 1^2][(\sqrt{x^2 + 2})^2 + (\sqrt{3x-1})^2] = (x+1)(x^2 + 3x + 1)$$

$\Rightarrow \sqrt{x(x^2 + 2)} + \sqrt{3x-1} \leq \sqrt{(x+1)(x^2 + 3x + 1)}$. Let (4), equation occurs when:

$$\begin{cases} x \geq \frac{1}{3} \\ \sqrt{x} \cdot \sqrt{3x-1} = 1 \cdot \sqrt{x^2 + 2} \end{cases} \Leftrightarrow \begin{cases} x \geq \frac{1}{3} \\ x(3x-1) = x^2 + 2 \end{cases} \Leftrightarrow \begin{cases} x \geq \frac{1}{3} \\ 2x^2 - x - 2 = 0 \end{cases} \Rightarrow x = \frac{1 + \sqrt{17}}{4} \text{ (satisfy)}$$

Therefore $S = \left\{ \frac{1 + \sqrt{17}}{4} \right\}$ is the only solution of the problem.

Example 4. Solve the equation : $\sqrt[4]{x-2} + \sqrt[4]{4-x} = x^2 - 6x + 11$ (5)

$$\text{My solution:} \begin{cases} x-2 \geq 0 \\ 4-x \geq 0 \end{cases} \Leftrightarrow 2 \leq x \leq 4:$$

- We see the expression on the left side as the sum of the two quadratic modes and: $(x-2) + (4-x) = 2$. From there, by Bunhiacopxki inequality we have:

$$\begin{aligned} (\sqrt[4]{x-2} + \sqrt[4]{4-x})^4 &= \left[(\sqrt[4]{x-2} + \sqrt[4]{4-x})^2 \right]^2 \leq [2(\sqrt{x-2} + \sqrt{4-x})]^2 = 4(\sqrt{x-2} + \sqrt{4-x})^2 \leq \\ &\leq 4 \cdot 2 \cdot [(x-2) + (4-x)] = 4 \cdot 2 \cdot 2 = 16 \end{aligned}$$

$$\Rightarrow \sqrt[4]{x-2} + \sqrt[4]{4-x} \leq \sqrt[4]{16} = 2$$

+ Let (5) $\Rightarrow x^2 - 6x + 11 \leq 2 \Leftrightarrow x^2 - 6x + 9 \leq 0 \Leftrightarrow (x-3)^2 \leq 0 \Rightarrow (x-3)^2 = 0$ and equality if occur

simultaneously: $\begin{cases} x-2 = 4-x \\ x-3 = 0 \end{cases} \Leftrightarrow x = 3$. Therefore $S = \{3\}$ is the only solution of the problem.

Example 5. Solve the equation : $\sqrt{x^2 + 12x + 61} + \sqrt{x^2 - 14x + 113} = \sqrt{338}$ (6)

$$\text{My solution:} \begin{cases} x^2 + 12x + 61 \geq 0 \\ x^2 - 14x + 113 \geq 0 \end{cases} \Leftrightarrow \begin{cases} (x+6)^2 + 25 \geq 0 \\ (x-7)^2 + 64 \geq 0 \end{cases} \text{. So that means consciousness } \forall x \in \mathbb{R}.$$

$$(6) \Leftrightarrow \sqrt{(x+6)^2 + 5^2} + \sqrt{(7-x)^2 + 8^2} = \sqrt{338} \quad (7)$$

+ We see, the left side of (7) is the tangent of two roots of form 2 : $\sqrt{a^2 + b^2} + \sqrt{c^2 + d^2}$, This suggests that Mincopxki's inequality is in the form $\sqrt{a^2 + b^2} + \sqrt{c^2 + d^2} \geq \sqrt{(a+c)^2 + (b+d)^2}$ (\geq sign occurs when : $ad = bc$)

+ Therefore: $\sqrt{(x+6)^2 + 5^2} + \sqrt{(7-x)^2 + 8^2} \geq \sqrt{(x+6+7-x)^2 + (5+8)^2} = \sqrt{13^2 + 13^2} = \sqrt{338}$. And let (7), equality occurs if : $(x+6)8 = 5(7-x) \Leftrightarrow 8x + 48 = 35 - 5x \Leftrightarrow 13x = -13 \Leftrightarrow x = -1$.

Therefore $S = \{1\}$ is the only solution of the problem.

Example 6. Solve the equation : $\sqrt{8x^2 - 16x + 10} + \sqrt{2x^2 - 4x + 4} = \sqrt{7 - x^2 + 2x}$ (8)

$$\text{My solution. } \begin{cases} 8x^2 - 16x + 10 \geq 0 \\ 2x^2 - 4x + 4 \geq 0 \\ 7 - x^2 + 2x \geq 0 \end{cases} \Leftrightarrow \begin{cases} 8(x-1)^2 + 2 \geq 0 \\ 2(x-1)^2 + 2 \geq 0 \Leftrightarrow 1 - 2\sqrt{2} \leq x \leq 1 + 2\sqrt{2} \\ (x-1)^2 \leq 8 \end{cases}$$

$$\begin{aligned} (8) &\Leftrightarrow \sqrt{(4x^2 - 4x + 1) + (4x^2 - 12x + 9)} + \sqrt{(x^2 - 4x + 4) + x^2} = \sqrt{8 - (x^2 - 2x + 1)} \\ &\Leftrightarrow \sqrt{(2x-1)^2 + (3-2x)^2} + \sqrt{(2-x)^2 + x^2} = \sqrt{8 - (x-1)^2} \end{aligned} \quad (9)$$

+ The left side of (9) is the tangent of two roots of type 2 $\sqrt{a^2 + b^2} + \sqrt{c^2 + d^2}$, by Mincopxki inequality we have :

$$\begin{aligned} \sqrt{(2x-1)^2 + (3-2x)^2} + \sqrt{(2-x)^2 + x^2} &\geq \sqrt{(2x-1+2-x)^2 + (3-2x+x)^2} \\ &= \sqrt{(x+1)^2 + (3-x)^2} = \sqrt{2x^2 - 4x + 10} = \sqrt{2(x-1)^2 + 8} \geq \sqrt{8} \end{aligned}$$

$$\begin{aligned} + \text{Let (9)} \Rightarrow \sqrt{8 - (x-1)^2} \geq \sqrt{8} \Leftrightarrow 8 - (x-1)^2 \geq 8 \Leftrightarrow (x-1)^2 \leq 0 \Rightarrow (x-1)^2 = 0 \text{ and equality occurs if} \\ \begin{cases} x-1=0 \\ (2x-1)x = (3-2x)(2-x) \end{cases} \Leftrightarrow \begin{cases} x=1 \\ 2x^2 - x = 2x^2 - 7x + 6 \end{cases} \Leftrightarrow \begin{cases} x=1 \\ 6x=6 \end{cases} \Leftrightarrow x=1. \end{aligned}$$

Therefore $S = \{1\}$ is the only solution of the problem.

Example 7. Solve the equation : $2\sqrt{x^3 + 1} + \sqrt{\frac{x^4 + 16}{2}} = 3x^2 - 6x + 10$ (10)

My solution. $x^3 + 1 \geq 0 \Leftrightarrow x \geq -1$. We see: $x = 2$ is the solution (10), The left-hand side equation contains square root.. By AM-GM inequality and Bunhiacopxki we have :

$$\begin{aligned} &\begin{cases} 2\sqrt{x^3 + 1} = 2\sqrt{(x+1)(x^2 - x + 1)} \leq (x+1) + (x^2 - x + 1) = x^2 + 2 \\ \left(\sqrt{\frac{x^4 + 16}{2}} + 2x\right)^2 \leq (1^2 + 1^2) \left(\frac{x^4 + 16}{2} + (2x)^2\right) = x^4 + 8x^2 + 16 = (x^2 + 4)^2 \end{cases} \\ \Rightarrow &\begin{cases} 2\sqrt{x^3 + 1} \leq x^2 + 2 \\ \sqrt{\frac{x^4 + 16}{2}} + 2x \leq x^2 + 4 \end{cases} \Leftrightarrow \begin{cases} 2\sqrt{x^3 + 1} \leq x^2 + 2 \\ \sqrt{\frac{x^4 + 16}{2}} \leq x^2 - 2x + 4 \end{cases} \Rightarrow 2\sqrt{x^3 + 1} + \sqrt{\frac{x^4 + 16}{2}} \leq 2x^2 - 2x + 6 \end{aligned}$$

+ Let (10) $\Rightarrow 3x^2 - 6x + 10 \leq 2x^2 - 2x + 6 \Leftrightarrow x^2 - 4x + 4 \leq 0 \Leftrightarrow (x-2)^2 \leq 0 \Rightarrow (x-2)^2 = 0$ and

equality occurs if $\begin{cases} x+1 = x^2 - x + 1 \\ \sqrt{\frac{x^4 + 16}{2}} = 2x \\ x-2 = 0 \end{cases} \Leftrightarrow \begin{cases} x(x-2) = 0 \\ (x^2 - 4)^2 = 0 \Leftrightarrow x = 2 \text{ (satisfy)} \\ x = 2 \end{cases}$

Therefore $S = \{2\}$ is the only solution of the equation.

* **Application exercises.** Solve the equations :

a) $2\sqrt{2x^3 - x} = 3x^2 - 3x + 2$

d) $\sqrt{2(x^4 + 1)} + 3\sqrt[3]{x} = x^2 + 4$

b) $\sqrt{\frac{x^4 + 16}{2}} + \sqrt{2(x^2 + 4)} = 3x + 2$

e) $3\sqrt[3]{x^2 - x + 1} + \sqrt[4]{\frac{x^8 + 1}{2}} = 2(x^4 - 3x + 4)$

c) $\sqrt{2x^3 - 2x^2 + x} + 2\sqrt[4]{3x - 2x^2} = x^4 - x^3 + 3$

f) $\sqrt{2x^2 + 2x + 5} + \sqrt{2x^2 - 10x + 17} = 6$