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Proof.

Using Bergstrom inequality we obtain:
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where the last inequality is equivalent with.:
3R(p? + 12 +4Rr) > 8rp? < p?(3R — 8r) + 3Rr(4R + 1) > 0.
We distinguish the cases:
Case 1). If 3R — 8r > 0, the inequality is obvious.
Case 2). If 3BR—8r < 0, the inequality can be rewritten 3Rr(4R-+r) > p?(8r —3R)

which is true from Gerretsen’s inequality p*> > 16Rr—>5r. It remains to prove that:
3Rr(4R+7) > (16Rr — 5r?)(8r — 3R) < 3R* — 2R*r —5Rr* — 61> > 0 &
& (R —2r)(3R? 4+ 4Rr + 3r?) > 0 obviously from Euler’s inequality R > 2r.
Equality holds if and only if the triangle is equilateral.

O
Remark.
Inequality 1) can be written:
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Proof.

We use the identity ab + bc + ca = p* + r* 4+ 4Rr.
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Remark.
Inequality 2) can be strengthened:
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Proof.

Using Bergstrom’s inequality, we obtain:

Z 3 Zm2)2 (%Za2)2 B %(ZGQ)Q - 9R(Za2)2 3
hphe

Z hyhe g ot T 32rp? = > a?
where the last inequality is equivalent with:
BRZ a? > 8rp? < 3R - 2(p* —r? — 4Rr) > 8rp® & p*(3R — 4r) > 3Rr(4Rr +7)
which is true from Gerretsen’s inequality p*> > 16 Rr—5r2. It remains to prove that:
(16 Rr—5r2)(3R—4r) > 3Rr(4R+r) < 18R*~41Rr+10r* > 0 < (R—2r)(18R—5r) > 0
obviously from Fuler’s inequality R > 2r.

Equality holds if and only if the triangle is equilateral.

O
Remark.
Inequality 8) is stronger than inequality 2):
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Proof.
See inequality 8) and a* + b* + ¢* > ab + be + ca.
Equality holds if and only if the triangle is equilateral.
O
Remark.
Inequality 8) can be also strengthened:
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Proof.
We prove the following lemmas:
Lemma 1.
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Proof.
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, where E = 22&2.
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Lemma 2.
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Proof.

Using Lemma 1 we obtain:

mi n my n mg  2p° — p*(23Rr + 2r?) + p?(10R*r? — 19Rr® — 2r*) + 2r3(4Rr +1)3
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, where the last inequality follows from
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Gerretsen’s inequality p? > 16 Rr — 5r% and Blundon’s inequality p* <

Let’s pass to solving inequality 5).
Using Lemma 2 and the identities a>+b*4c* = 2p(p*>—3r*—6Rr) and a+b+c = 2p
TTR® — 112R?*r + 25Rr? — 2r3 S 2.210(102 —3r?2 —6Rr) o
4R 4 2p
TTR® — 112R?r + 25Rr? — 213 > 9R(p* — 31> — 6Rr)

which follows from Gerretsen’s inequality p* < AR*+4ARr+3r2. It remains to prove that:

TTR® — 112R?r + 25Rr? — 21 > 9R(4R? + 4Rr + 3r® — 3r® — 6Rr) &

41R? — 94R*r + 25Rr* — 21 > 0 < (R — 2r)(41R* — 12Rr +7%) > 0

obviously from Fuler’s inequality R > 2r.

It suffices to prove that

Equality holds if and only if the triangle is equilateral.
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Remark.
Inequality 5) is stronger than inequality 3):
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See inequality 5) and
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true from Chebysev’s inequality.
Equality holds if and only if the triangle is equilateral.
([l
Remark.
The following inequalities can be written:
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Proof.
See inequalities 7), 8), and 4).
Equality holds if and only if the triangle is equilateral.
O
Remark.
Let’s find an inequality having an apposite sense.
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Using Lemma 1 we obtain:
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_ 16R* — 14R3r — R?>r?2 — 19Rr3 + 674 < 4R* — 37rt

12 < 5 where the last inequality follows from
r r

Euler’s inequality R > 2r and the penultimate from Gerretsen’s inequality

4R 2
p? < AR? + 4Rr + 3r? and p* > u
R+r
true from Gerretsen’s inequality p*> > 16Rr — 512,

Equality holds if and only if the triangle is equilateral.

Remark.

The double inequality can be written:
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Proof.

See inequalities 10), 7) and Euler’s inequality R > 2r.
Equality holds if and only if the triangle is equilateral.
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