

SOLUTION

PROBLEM JP104 WINTER 2017

ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1) In ΔABC

$$\frac{r_a^2}{h_b m_c} + \frac{r_b^2}{h_c m_c} + \frac{r_c^2}{h_a m_b} \geq \frac{54r^2}{p^2 - r^2 - 4Rr}$$

Proposed by D.M. Bătinețu-Giurgiu - Romania, Martin Lukarevski - Skopje

Proof.

We prove the following lemma:

Lemma 1.

2) In ΔABC

$$\frac{r_a^2}{h_b m_c} + \frac{r_b^2}{h_c m_a} + \frac{r_c^2}{h_a m_b} \geq \frac{4(4R + r)^2}{5p^2 - 3r(4R + r)}$$

Proposed by Marin Chirciu - Romania

Proof.

Using the fact that $h_a \leq m_a$ and Bergström inequality we obtain:

$$\begin{aligned} \sum \frac{r_a^2}{h_b m_c} &\geq \sum \frac{r_a^2}{m_b m_c} \geq \frac{(\sum r_a)^2}{\sum m_b m_c} \geq \frac{(4R + r)^2}{\frac{1}{4} \sum (2a^2 + bc)} = \frac{4(4R + r)^2}{2 \sum a^2 + \sum bc} = \\ &= \frac{4(4R + r)^2}{2 \cdot 2(p^2 - r^2 - 4Rr) + p^2 + r^2 + 4Rr} = \frac{4(4R + r)^2}{5p^2 - 3r(4R + r)} \end{aligned}$$

Equality holds if and only if the triangle is equilateral.

□

Let's pass to solving the inequality from the enunciation.

Using **Lemma 1** it's enough to prove that $\frac{4(4R + r)^2}{5p^2 - 3r(4R + r)} \geq \frac{54r^2}{p^2 - r^2 - 4Rr}$.

This inequality can be transformed equivalently:

$$\begin{aligned} 2(4R + r)^2(p^2 - r^2 - 4Rr) &\geq 27r^2(5p^2 - 3r^2 - 12Rr) \Leftrightarrow \\ \Leftrightarrow p^2(32R^2 + 16Rr - 133r^2) &\geq 2r(4R + r)^3 - 81r^3(4R + r) \end{aligned}$$

which follows from Gerretsen's inequality $p^2 \geq 16Rr - 5r^2$

and from the observation that $32R^2 + 16Rr - 133r^2 > 0$ (see Euler's inequality $R \geq 2r$).

It remains to prove that:

$$\begin{aligned} (16Rr - 5r^2)(32R^2 + 16Rr - 133r^2) &\geq 2r(4R + r)^3 - 81r^3(4R + r) \Leftrightarrow \\ \Leftrightarrow 32R^3 - 159Rr^2 + 62r^3 &\geq 0 \Leftrightarrow (R - 2r)(32R^2 + 64Rr - 31r^2) \geq 0 \end{aligned}$$

obviously from Euler's inequality.

Equality holds if and only if the triangle is equilateral.

□

Remark.

Inequality 1) can be rewritten:

1) In ΔABC

$$\frac{r_a^2}{h_b m_c} + \frac{r_b^2}{h_c m_a} + \frac{r_c^2}{h_a m_b} \geq \frac{108r^2}{a^2 + b^2 + c^2}$$

Proof.

Using **Lemma 1** and the identity $ab+bc+ca = p^2+r^2+4Rr$ it suffices to prove that

$$\frac{4(4R+r)^2}{5p^2 - 3r(4R+r)} \geq \frac{108r^2}{p^2 + r^2 + 4Rr}$$

This inequality transformed equivalently:

$$\begin{aligned} (4R+r)^2(p^2 + r^2 + 4Rr) &\geq 27r^2(5p^2 - 3r^2 - 12Rr) \Leftrightarrow \\ \Leftrightarrow p^2(16R^2 + 8Rr + r^2 - 135r^2) + r(4R+r)^3 + 81r^3(4R+r) &\geq 0 \Leftrightarrow \\ \Leftrightarrow p^2(8R^2 + 4Rr - 67r^2) + 32R^3r + 24R^2r^2 + 168Rr^3 + 41r^4 &\geq 0 \end{aligned}$$

We distinguish the following cases:

Case 1). If $8R^2 + 4Rr - 67r^2 \geq 0$, the inequality is obvious.

Case 2). If $8R^2 + 4Rr - 67r^2 < 0$, the inequality can be rewritten:

$$32R^3r + 24R^2r^2 + 168Rr^3 + 41r^4 \geq p^2(67r^2 - 4Rr - 8r^2)$$

which follows from Gerretsen's inequality $p^2 \leq 4R^2 + 4Rr + 3r^2$. It remains to prove that:

$$\begin{aligned} 32R^3r + 24R^2r^2 + 168Rr^3 + 41r^4 &\geq (4R^2 + 4Rr + 3r^2)(67r^2 - 4Rr - 8r^2) \Leftrightarrow \\ \Leftrightarrow 8R^4 + 20R^3r - 51R^2r^2 - 22Rr^3 - 40r^4 &\geq 0 \Leftrightarrow (R-2r)(8R^3 + 36R^2r + 21Rr^2 + 20r^3) \geq 0, \end{aligned}$$

obviously from Euler's inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

□

Remark.

5. In ΔABC

$$\frac{r_a^2}{h_b m_c} + \frac{r_b^2}{h_c m_a} + \frac{r_c^2}{h_a m_b} \geq \frac{108r^2}{ab + bc + ca} \geq \frac{108r^2}{a^2 + b^2 + c^2}.$$

Proof.

We use inequality 4) and inequality $a^2 + b^2 + c^2 \geq ab + bc + ca$.

Equality holds if and only if the triangle is equilateral.

□

Remark.

Inequality 4) can also be strengthened:

6) In ΔABC

$$\frac{r_a^2}{h_b m_c} + \frac{r_b^2}{h_c m_a} + \frac{r_c^2}{h_a m_b} \geq \frac{9r\sqrt{3}}{p}$$

Proof.

Using **Lemma 1** it suffices to prove that $\frac{4(4R+r)^2}{5p^2 - 3r(4R+r)} \geq \frac{9r\sqrt{3}}{p}$.

This inequality can be transformed equivalently:

$4p(4R+r)^2 \geq 9r\sqrt{3}(5p^2 - 3r^2 - 12Rr)$, which follows from Mitrinović's inequality $p \geq 3r\sqrt{3}$.

It suffices to prove that

$$\begin{aligned} 4 \cdot 3r\sqrt{3}(4R+r)^2 &\geq 9r\sqrt{3}(5p^2 - 3r^2 - 12Rr) \Leftrightarrow 4(4R+r)^2 \geq 15p^2 - 9r(4R+r) \Leftrightarrow \\ &\Leftrightarrow 4(4R+r)^2 + 9r(4R+r) \geq 15p^2, \text{ true from Gerretsen's inequality} \\ &\qquad p^2 \leq 4R^2 + 4Rr + 3r^2. \text{ It remains to prove that:} \\ 4(4R+r)^2 + 9r(4R+r) &\geq 15(4R^2 + 4Rr + 3r^2) \Leftrightarrow R^2 + 2Rr - 8r^2 \geq 0 \Leftrightarrow (R-2r)(R+4r) \geq 0 \\ &\qquad \text{obviously from Euler's inequality } R \geq 2r. \end{aligned}$$

Equality holds if and only if the triangle is equilateral.

□

Remark.

Inequality 6) is stronger than inequality 4).

7) In ΔABC

$$\frac{r_a^2}{h_b m_c} + \frac{r_b^2}{h_c m_a} + \frac{r_c^2}{h_a m_b} \geq \frac{9r\sqrt{3}}{p} \geq \frac{108r^2}{ab + bc + ca}$$

Proof.

We use inequality 6) and the known inequality in triangle $ab + bc + ca \geq 4\sqrt{3}S$

□

Remark.

Inequality 6) can also be strengthened:

8) In ΔABC

$$\frac{r_a^2}{h_b m_c} + \frac{r_b^2}{h_c m_a} + \frac{r_c^2}{h_a m_b} \geq \frac{2p\sqrt{3}}{3R}$$

Proof.

Using **Lemma 1** it suffices to prove that $\frac{4(4R+r)^2}{5p^2 - 3r(4R+r)} \geq \frac{2p\sqrt{3}}{3R}$.

This inequality can be transformed equivalently:

$6R(4R+r)^2 \geq p\sqrt{3}(5p^2 - 3r^2 - 12Rr)$, which follows from Doucet's inequality

$4R+r \geq p\sqrt{3}$. It remains to prove that

$6R(4R+r)^2 \geq (4R+r)(5p^2 - 3r^2 - 12Rr) \Leftrightarrow 6R(4R+r) \geq 5p^2 - 3r^2 - 12Rr$

true from Gerretsen's inequality $p^2 \leq 4R^2 + 4Rr + 3r^2$. It remains to prove that:

$6R(4R+r) \geq 5(4R^2 + 4Rr + 3r^2) - 3r^2 - 12Rr \Leftrightarrow 2R^2 - Rr - 6r^2 \geq 0 \Leftrightarrow (R-r)(2R+3r) \geq 0$

obviously from Euler's inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

□

Remark.

Inequality 8) is stronger than inequality 6).

9) In ΔABC

$$\frac{r_a^2}{h_b m_c} + \frac{r_b^2}{h_c m_a} + \frac{r_c^2}{h_a m_b} \geq \frac{2p\sqrt{3}}{3R} \geq \frac{9r\sqrt{3}}{p}.$$

Remark.

We use inequality 8) and the known inequality in triangle $2p^2 \geq 27Rr$

(true from Gerretsen's inequality $p^2 \geq 16Rr - 5r^2$ and Euler's inequality $R \geq 2r$).

Remark.

We can write the following inequalities:

10) In ΔABC

$$\frac{r_a^2}{h_b m_c} + \frac{r_b^2}{h_c m_a} + \frac{r_c^2}{h_a m_b} \geq \frac{4(4R+r)^2}{5p^2 - 3r(4R+r)} \geq \frac{9r\sqrt{3}}{p} \geq \frac{108r^2}{p^2 + r^2 + 4Rr} \geq \frac{54r^2}{p^2 - r^2 - 4Rr}$$

Proof.

We use **Lemma 1** and the above inequalities.

Equality holds if and only if the triangle is equilateral.

□

Remark.

Let's find an inequality having an opposite sense:

11) In ΔABC

$$\frac{r_a^2}{h_b m_c} + \frac{r_b^2}{h_c m_a} + \frac{r_c^2}{h_a m_b} \leq \left(\frac{R}{r}\right)^2 - \frac{3}{4} \cdot \frac{R}{r} + \frac{1}{2}.$$

Proof.

Let's prove the following lemma:

Lemma 2.

12) In ΔABC

$$\frac{r_a^2}{h_b m_c} + \frac{r_b^2}{h_c m_a} + \frac{r_c^2}{h_a m_b} \leq \frac{p^2(r - 8R) + (4R + r)^3}{4rp^2}$$

Proposed by Marin Chirciu - Romania

Proof.

Using the fact that $h_a \leq m_a$ we obtain:

$$\begin{aligned} \sum \frac{r_a^2}{h_b m_c} &\leq \sum \frac{r_a^2}{h_b h_c} = \sum \frac{\frac{S^2}{(p-a)^2}}{\frac{2S}{b} \cdot \frac{2S}{c}} = \frac{1}{4} \sum \frac{bc}{(p-a)^2} = \frac{1}{4} \det \frac{p^2(r - 8R) + (4R + r)^3}{rp^2} = \\ &= \frac{p^2(r - 8R) + (4R + r)^3}{4rp^2} \end{aligned}$$

The equality holds if and only if the triangle is equilateral.

□

Let's pass to solving inequality 11).

Using **Lemma 2** it suffices to prove that $\frac{p^2(r - 8R) + (4R + r)^3}{4rp^2} \leq \left(\frac{R}{r}\right)^2 - \frac{3}{4} \cdot \frac{R}{r} + \frac{1}{2}$

This inequality can be transformed equivalently:

$$p^2(r - 8R) + (4R + r)^3 \leq p^2(4R^2 - 3Rr + 2r^2) \Leftrightarrow p^2(4R^2 + 5Rr + r^2) \geq r(4R + r)^3$$

$$\text{which follows from inequality } p^2 \geq \frac{r(4R + r)^2}{R + r}$$

(true from Gerretsen's inequality $p^2 \geq 16Rr - 5r^2$ and Euler's inequality $R \geq 2r$).

The equality holds if and only if the triangle is equilateral.

□

Remark.

The double inequality can be written:

1) In ΔABC

$$\frac{4(4R + r)^2}{5p^2 - 3r(4R + r)} \leq \frac{r_a^2}{h_b m_c} + \frac{r_b^2}{h_c m_a} + \frac{r_c^2}{h_a m_b} \leq \frac{p^2(r - 8R) + (4R + r)^3}{4rp^2}$$

Proof.

See **Lemma 1** and **Lemma 2**

The equality holds if and only if the triangle is equilateral.

□