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Proof.

Let’s prove the following lemma:

Lemma 1.
2) In ∆ABC
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Let’s pass to solving inequality 1).

Using Lemma 1 the inequality can be written
5p2 − (4R+ r)2

2rp2
≤ 1

r
− R− 2r

2Rr
⇔

⇔ p2 ≤ R(4R+ r)2

2(2R− r)
, which is Blundon’s-Gerretsen’s inequality.

Equality holds if and only if the triangle is equilateral.
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Remark.

Let’s find an inequality having an opposite sense:
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Proof.

Using Lemma 1 the inequality can be written:

5p2 − (4R+ r)2

2rp2
≥ 4r −R

2r2
⇔ p2 ≥ r(4R+ r)2

R+ r

which follows from Gerretsen’s inequality p2 ≥ 16Rr − 5r2.

Equality holds if and only if the triangle is equilateral.

�

Remark.

The double inequality can be written:

4) In ∆ABC
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Proof.

See inequalities 1) and 3).

Equality holds if and only if the triangle is equilateral.
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Remark.

In the same way we can propose:
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Proof.

We prove the following lemma:

Lemma 2.
6) In ∆ABC
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Let’s pass to solve the double inequality 5).

Using Lemma 2 the double inequality 5) can be written

1
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p
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which follows from Gerretsen’s inequality 16Rr − 5r2 ≤ p2 ≤ 4R2 + 4Rr + 3r2.

Equality holds if and only if the triangle is equilateral.
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7) In ∆ABC

5

2r
−

1

R
≤

cscA

p − a
+

cscB

p − b
+

cscC

p − c
≤

1

2r

(
2 +

R

r

)
.

Proposed by Marin Chirciu - Romania

Proof.

We prove the following lemma:

Lemma 3.
8) In ∆ABC
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Let’s pass to solve the double inequality 7).

Using Lemma 3 the double inequality 7) can be written
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which follows from Blundon’s Gerretsen’s inequality
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≤ p2 ≤ R(4R+ r)2
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.

Equality holds if and only if the triangle is equilateral.
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Proof.
We prove the following lemma:

Lemma 4
10) In ∆ABC
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Let’s pass to solve the double inequality 9).

Using Lemma 4 the double inequality 7) can be written
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The left inequality is equivalent with:

p4 + p2(2r2− 4Rr)+ r(4R+ r)3 ≥ 48r2p2 ⇔ p2(p2− 46r2− 4Rr)+ r(4R+ r)3 ≥ 0.

We distinguish the following cases:

Case 1). If p2 − 46r2 − 4Rr ≥ 0, the inequality becomes obviously.

Case 2). If p2 − 46r2 − 4Rr < 0, the inequality can be rewritten:

p2(46r2 + 4Rr − p2) ≤ r(4R+ r)3 it follows from Blundon-Gerretsen’s inequality

16Rr − 5r2 ≤ p2 ≤ R(4R+ r)2

2(2R− r)
. It remains to prove that:

R(4R+ r)2

2(2R− r)
· (46r2 +4Rr− 16Rr+5r2) ≤ r(4R+ r)3 ⇔ 28R2− 55Rr− 2r2 ≥ 0⇔

⇔ (R− 2r)(28R+ r) ≥ 0, obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

Let’s solve the inequality from the right:

We have
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=

1

4r2p

[
p2+2r2−4Rr+

r(4R+ r)3

p2

]
≤

≤ 1

4r2p

[
4R2+4Rr+3r2+2r2−4Rr+

r(4R+ r)3

r(4R+r)
R+r

]
=

1

4r2p
[4R2+5r2+(4R+r)(R+r)] =

=
8R2 + 5Rr + 6r2

4r2p
=

1

p

(2R2

r2
+

5R

4r
+

3

2

)
.

In the above inequality we’ve used p2 ≤ 4R2 + 4Rr + 3r2 and
r(4R+ r)2

R+ r
≤ p2

it follows from Gerretsen’s inequality 16Rr − 5r2 ≤ p2.

Equality holds if and only if the triangle is equilateral.
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