

TRIANGLE INEQUALITY - 524
ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1) In ΔABC

$$\frac{bc}{r_b r_c} + \frac{ca}{r_c r_a} + \frac{ab}{r_a r_b} \geq 5 - \frac{2r}{R}$$

Proposed by Adil Abdullayev - Baku - Azerbaijani

Proof.

We prove the following lemma:

Lemma 1.

2) In ΔABC

$$\frac{bc}{r_b r_c} + \frac{ca}{r_c r_a} + \frac{ab}{r_a r_b} = 1 + \left(\frac{4R + r}{p} \right)^2.$$

Proof.

Using the formula $r_a = \frac{S}{p-a}$ we obtain:

$$\sum \frac{bc}{r_b r_c} = \sum \frac{bc}{\frac{S}{p-b} \cdot \frac{S}{p-c}} = \frac{1}{S^2} \sum bc(p-b)(p-c) = \frac{1}{r^2 p^2} \cdot r^2 [p^2 + (4R+r)^2] = 1 + \left(\frac{4R + r}{p} \right)^2$$

□

Let's prove inequality 1).

Using **Lemma 1** inequality 1) can be written:

$$1 + \left(\frac{4R + r}{p} \right)^2 \geq 5 - \frac{2r}{R} \Leftrightarrow p^2 \leq \frac{R(4R+r)^2}{2(2R-r)}, \text{ which is Blundon-Gerretsen's inequality.}$$

Equality holds if and only if the triangle is equilateral.

□

Remark.

Let's find an inequality having on opposite sense:

3) In ΔABC

$$\frac{bc}{r_b r_c} + \frac{ca}{r_c r_a} + \frac{ab}{r_a r_b} \leq 2 + \frac{R}{r}$$

Proposed by Marin Chirciu - Romania

Proof.

Using Lemma 1 inequality 3) can be written:

$$1 + \left(\frac{4R+r}{p} \right)^2 \leq 2 + \frac{R}{r} \Rightarrow p^2 \geq \frac{r(4R+r)^2}{R+r}$$

which follows from Gerretsen's inequality $p^2 \geq 16Rr - 5r^2$.

Equality holds if and only if the triangle is equilateral.

□

Remark.

The double inequality can be written:

4) In ΔABC

$$5 - \frac{2r}{R} \leq \frac{bc}{r_b r_c} + \frac{ca}{r_c r_a} + \frac{ab}{r_a r_b} \leq 2 + \frac{R}{r}.$$

Proof.

See inequalities 1) and 3).

Equality holds if and only if the triangle is equilateral.

□

Remark.

In the same way we can propose:

5) In ΔABC

$$4 \leq \frac{bc}{h_b h_c} + \frac{ca}{h_c h_a} + \frac{ab}{h_a h_b} \leq 4 \left(\frac{R}{r} \right)^2 - \frac{3}{4} \cdot \frac{R}{r} + \frac{3}{2}$$

Proposed by Marin Chirciu - Romania

Proof.

We prove the following lemma:

Lemma 2.

6) In ΔABC

$$\frac{bc}{h_b h_c} + \frac{ca}{h_c h_a} + \frac{ab}{h_a h_b} = \frac{p^4 + p^2(2r^2 - 8Rr) + r^2(4R+r)^2}{4r^2 p^2}$$

Proof.

Using the formula $h_a = \frac{2S}{a}$ we obtain:

$$\begin{aligned} \sum \frac{bc}{h_b h_c} &= \sum \frac{bc}{\frac{2S}{b} \cdot \frac{2S}{c}} = \frac{1}{4S^2} \sum b^2 c^2 = \frac{1}{4r^2 p^2} [p^4 + p^2(2r^2 - 8Rr) + r^2(4R+r)^2] = \\ &= \frac{p^4 + p^2(2r^2 - 8Rr) + r^2(4R+r)^2}{4r^2 p^2}. \end{aligned}$$

□

Let's prove the double inequality 5).

Using **Lemma 2** the left inequality from 5) can be written:

$$4 \leq \frac{p^4 + p^2(2r^2 - 8Rr) + r^2(4R + r)^2}{4r^2p^2} \Leftrightarrow p^4 + p^2(2r^2 - 8Rr) + r^2(4R + r)^2 \geq 16r^2p^2 \Leftrightarrow p^4 - p^2(14r^2 + 8Rr) + r^2(4R + r)^2 \geq 0 \Leftrightarrow p^2(p^2 - 14r^2 - 8Rr) + r^2(4R + r)^2 \geq 0.$$

We distinguish the following cases:

Case 1). If $p^2 - 14r^2 - 8Rr \geq 0$, the inequality is obvious.

Case 2). If $p^2 - 14r^2 - 8Rr < 0$, inequality can be rewritten:

$$p^2(8Rr + 14r^2 - p^2) \leq r^2(4R + r)^2, \text{ which follows from Gerretsen's inequality}$$

$16Rr - 5r^2 \leq p^2 \leq 4R^2 + 4Rr + 3r^2$. It remains to prove that:

$$(4R^2 + 4Rr + 3r^2)(8Rr + 14r^2 - 16Rr + 5r^2) \leq r^2(4R + r)^2 \Leftrightarrow$$

$$\Leftrightarrow (4R^2 + 4Rr + 3r^2)(19r - 8R) \leq r(4R + r)^2 \Leftrightarrow 8R^3 - 7R^2r - 11Rr^2 - 14r^3 \geq 0 \Leftrightarrow \Leftrightarrow (R - 2r)(8R^2 + 9Rr + 7r^2) \geq 0, \text{ obviously from Euler's inequality } R \geq 2r.$$

Equality holds if and only if the triangle is equilateral.

Let's prove the right inequality from 5):

We have

$$\begin{aligned} \frac{bc}{h_b h_c} + \frac{ca}{h_c h_a} + \frac{ab}{h_a h_b} &= \frac{p^4 + p^2(2r^2 - 8Rr) + r^2(4R + r)^2}{4r^2p^2} = \\ &= \frac{1}{4r^2} \left[p^2 + 2r^2 - 8Rr + \frac{r^2(4R + r)^2}{p^2} \right] \leq \frac{1}{4r^2} \left[4R^2 + 4Rr + 3r^2 + 2r^2 - 8Rr + \frac{r^2(4R + r)^2}{\frac{r(4R+r)^2}{R+r}} \right] = \\ &= \frac{1}{4r^2} (4R^2 - 4Rr + 5r^2 + r(R + r)) = \frac{4R^2 - 3Rr + 6r^2}{4r^2} = 4 \left(\frac{R}{r} \right)^2 - \frac{3}{4} \cdot \frac{R}{r} + \frac{3}{2}. \end{aligned}$$

In the above inequality we've used $p^2 \leq 4R^2 + 4Rr + 3r^2$ and $p^2 \geq \frac{r(4R + r)^2}{R + r}$

which follows from Gerretsen's inequality.

Equality holds if and only if the triangle is equilateral.

□

7) In ΔABC

$$2 + \left(\frac{r}{R} \right)^2 \leq \frac{h_b h_c}{bc} + \frac{h_c h_a}{ca} + \frac{h_a h_b}{ab} \leq \frac{3r}{R} \left(2 - \frac{r}{R} \right).$$

Proposed by Marin Chirciu - Romania

Proof.

Let's prove the following lemma:

Lemma 3.

8) In ΔABC

$$\frac{h_b h_c}{bc} + \frac{h_c h_a}{ca} + \frac{h_a h_b}{ab} = \frac{p^2 - r^2 - 4Rr}{2R^2}.$$

Proof.

Using the formula $h_a = \frac{2S}{a}$ we obtain:

$$\begin{aligned} \sum \frac{h_b h_c}{bc} &= \sum \frac{\frac{2S}{b} \cdot \frac{2S}{c}}{bc} = 4S^2 \sum \frac{1}{b^2 c^2} = 4r^2 p^2 \cdot \frac{\sum a^2}{a^2 b^2 c^2} = \\ &= 4r^2 p^2 \cdot \frac{2(p^2 - r^2 - 4Rr)}{16R^2 r^2 p^2} = \frac{p^2 - r^2 - 4Rr}{2R^2} \end{aligned}$$

□

Let's prove the double inequality 7).

Using Lemma 3 the double inequality 7) can be written:

$$2 + \left(\frac{r}{R}\right)^2 \leq \frac{p^2 - r^2 - 4Rr}{2R^2} \leq \frac{3r}{R} \left(2 - \frac{r}{R}\right)$$

which follows from Gerretsen's inequality $16Rr - 5r^2 \leq p^2 \leq 4R^2 + 4Rr + 3r^2$.

Equality holds if and only if the triangle is equilateral.

□

9) In ΔABC

$$\frac{9r}{2R} \leq \frac{r_b r_c}{bc} + \frac{r_c r_a}{ca} + \frac{r_a r_b}{ab} \leq \frac{9}{4}$$

Proposed by Marin Chirciu - Romania

Proof.

We prove the following lemma:

Lemma 4.

10) In ΔABC

$$\frac{r_b r_c}{bc} + \frac{r_c r_a}{ca} + \frac{r_a r_b}{ab} = 2 + \frac{r}{2R}$$

Proof.

Using the formula $r_a = \frac{S}{p-a}$ we obtain:

$$\sum \frac{r_b r_c}{bc} = \sum \frac{\frac{S}{p-b} \cdot \frac{S}{p-c}}{bc} = S^2 \sum \frac{1}{bc(p-b)(p-c)} = r^2 p^2 \cdot \frac{4R+r}{2Rr^2 p^2} = \frac{4R+r}{2R}.$$

□

Let's prove the double inequality 9).

Using Lemma 4 the double inequality 9) can be written:

$$\frac{9r}{2R} \leq 2 + \frac{r}{2R} \leq \frac{9}{4} \Leftrightarrow 2r \leq R \text{ (Euler's inequality).}$$

Equality holds if and only if the triangle is equilateral.

□