Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

TRIANGLE INEQUALITY - 524
ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1) In AABC
be ca ab 2r
+- 2 >5-2
TeTe TeTa  TaTb R
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Proof.
We prove the following lemma:
Lemma 1.
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Using the formula r, = H we obtain:
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Let’s prove inequality 1).
Using Lemma 1 inequality 1) can be written:

4R 4 1r\2 2r 5 _ RAR+71)?
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, which is Blundon-Gerretsen’s inequality.

p
Equality holds if and only if the triangle is equilateral.
O
Remark.
Let’s find an inequality having on opposite sense:
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Proof.
Using Lemma 1 inequality 3) can be written:
4 2 4 2
1+( R+r> < 2+§ TS r(4R +r)
D r R+r
which follows from Gerretsen’s inequality p*> > 16Rr — 5r>.
Equality holds if and only if the triangle is equilateral.
O
Remark.
The double inequality can be written:
4) In AABC
2r bc ca ab R
5—— < + + <2+ —.
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Proof.
See inequalities 1) and 3).
Equality holds if and only if the triangle is equilateral.
O
Remark.
In the same way we can propose:
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Proof.
We prove the following lemma:
Lemma 2.
6) In AABC
be L ab  p*4p?(2r> —8Rr) + r?(4R +1)?
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Proof.
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Using the formula h, = - e obtain:
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Let’s prove the double inequality 5).

Using Lemma 2 the left inequality from 5) can be written:
< At ii;)2+ PR+ )" & p*p?(2r—8Rr)+r?(4R+7)% > 16r%p* <
pt — p?(14r% + 8Rr) + r> (4R +7)? > 0 & p*(p? — 1472 — 8Rr) + (4R + )% > 0.

We distinguish the following cases:
Case 1). If p*> — 14r% — 8Rr > 0, the inequality is obvious.
Case 2). If p? — 1412 — 8Rr < 0, inequality can be rewritten:
p?(8Rr + 1412 — p?) < r*(4R + 1), which follows from Gerretsen’s inequality

16Rr — 512 < 102 < AR? + 4Rr + 3r%. It remains to prove that:

(4R? 4+ 4Rr + 3r®)(8Rr + 14r* — 16Rr + 5r?) < r?(4R +r)* &

& (AR*+4Rr+3r?)(19r —8R) < r(4R+7)? © 8R* —7TR*r —11Rr* —14r® > 0 &
< (R—2r)(8R? +9Rr + 7r?) > 0, obviously from Euler’s inequality R > 2r.
Equality holds if and only if the triangle is equilateral.

Let’s prove the right inequality from 5):

4

We have
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In the above inequality we’ve used p> < 4R* + 4Rr + 3r% and p* > %
r
which follows from Gerretsen’s inequality.
Equality holds if and only if the triangle is equilateral.
O
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Proof.
Let’s prove the following lemma:
Lemma 3.
8) In AABC
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Proof.
. 285 .
Using the formula h, = — we obtain:
a
hyhe % 2 2 1 22 20
= c - 45 _— = 4 . =
be Z be Z b2¢? TP e
_ a2yt 2(p? —r? —4Rr) _ p?> —r2 —4Rr
16 R?r2p? 2R?
|
Let’s prove the double inequality 7).
Using Lemma 3 the double inequality 7) can be written:
r\2 _p?>—1r2—4Rr _3r r
(5 < <o)
+ R/ — 2R? R R
which follows from Gerretsen’s inequality 16Rr — 5r* < p*> < 4R? + 4Rr 4 3r%.
Equality holds if and only if the triangle is equilateral.
O
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Proof.
We prove the following lemma:
Lemma 4.
10) In AABC
TpTe + TcTq " Talb _ 2+
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Proof.
Using the formula r, = i we obtain:
p—
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Let’s prove the double inequality 9).
Using Lemma 4 the double inequality 9) can be written:

9 9

é <24+ é < 1 < 2r < R (Euler’s inequality).
Equality holds if and only if the triangle is equilateral.
O
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