
Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

TRIANGLE INEQUALITY - 532

ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU
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Proof.

We prove the following lemma:

Lemma 1.
2) In ∆ABC
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Proof.

Using the following formulas cos2
A

2
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p(p− a)

bc
and ra =
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p− a
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Let’s prove inequality 1).

Using Lemma 1 inequality 1) becomes:

1

r2
− 1

2Rr

(4R+ r

p

)2
≥ 1

2Rr
⇔ p2(2R− r) ≥ r(4R+ r)2, which is true from

Gerretsen’s inequality p2 ≥ 16Rr − 5r2. It remains to prove that

(16Rr−5r2)(2R−r) ≥ r(4R+r)2 ⇔ 8R2−17Rr+2r2 ≥ 0⇔ (R−2r)(8R−r) ≥ 0

obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.
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Remark.

Let’s find an inequality having an opposite sense:

3) In ∆ABC
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Proof.

Using Lemma 1 inequality 3) can be written:
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(4R+ r

p

)2
≤
( 1

R
− 1

r

)2
⇔ p2 ≤ R(4R+ r)2

2(2R− r)

(Blundon - Gerretsen’s inequality)

Equality holds if and only if the triangle is equilateral.
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Remark.

The double inequality can be written:

4. In ∆ABC
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Proof.

See inequalities 1) and 3).
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Remark.

In the same way we can propose:

5) In ∆ABC
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Proof.

We prove the following lemma:

Lemma 2.
6) In ∆ABC
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Proof.

Using the following formulas sin2
A

2
=

(p− b)(p− c)

bc
and ra =

S

p− a
we obtain:

∑ sin2 A
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Let’s prove the double inequality 5).

Using Lemma 2 double inequality 5) can be written:
1

R2p
≤ 1

2Rrp
≤ 1

4r2p
⇔ 4r2 ≤ 2Rr ≤ R2 ⇔ 2r ≤ R (Euler’s inequality).

Equality holds if and only if the triangle is equilateral.

�
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Proof.
We prove the following lemma:

Lemma 3.
8) In ∆ABC
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Proof.

Using the following formulas tan2
A

2
=

(p− b)(p− c)

p(p− a)
and ra =

S

p− a
we obtain:
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Let’s prove the double inequality 7).

Using Lemma 3 the double inequality 7) can be written:

4

9R2
≤ 3

p2
≤ 1

9r2
⇔ 27r2 ≤ p2 ≤ 27R2

4
(Mitrinović’s inequality).

Equality holds if and only if the triangle is equilateral.
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9) In ∆ABC
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Proof.
We prove the following Lemma:

10) In ∆ABC
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Proof.

Using the following formulas cot2
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we obtain:
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Let’s prove the double inequality 9.

Using Lemma 3 the double inequality 9) can be written:

1

r2
≤ p4 − 16Rrp2 + 2r2(4R+ r)2

r4p2
≤ 4R2 − 10Rr + 5r2

r4
.

The first inequality can be transformed equivalently:

1

r2
≤ p4 − 16rp2 + 2r2(4R+ r)2

r4p2
⇔ p4 − 16Rrp2 + 2r2(4R+ r)2 ≥ r2p2 ⇔

⇔ p2(p2 − 16Rr − r2) + 2r2(4R+ r)2 ≥ 0.

We distinguish the following cases:

Case 1). If p2 − 16Rr − r2 ≥ 0, the inequality is equivalent.

Case 2). If p2 − 16Rr − r2 < 0, the inequality can be rewritten:

p2(16Rr + r2 − p2) ≤ 2r2(4R+ r)2, which follows from Gerretsen’s inequality:

16Rr − 5r2 ≤ p2 ≤ 4R2 + 4Rr + 3r2. It remains to prove that:

(4R2+4Rr+3r2)(16Rr+ r2−16Rr+5r2) ≤ 2r2(4R+ r)2 ⇔ R2−Rr−2r2 ≥ 0⇔
⇔ (R− 2r)(R+ r) ≥ 0, obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

Let’s prove the second inequality.

We have
p4 − 16Rrp2 + 2r2(4R+ r)2

r4p2
=

1

r4

[
p2 − 16Rr +

2r2(4R+ r)2

p2

]
≤

≤ 1

r4

[
4R2+4Rr+3r2−16Rr+

2r2(4R+ r)2

r(4R+r)2

R+r

]
=

1

r4
[4R2−12Rr+3r2+2r(R+r)] =
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=
4R2 − 10Rr + 5r2

r4
, where, above were used inequalities p2 ≤ 4R2+4Rr+4r2 and

p2 ≥ r(4R+ r)2

R+ r
, true from Gerretsen’s inequality.

Equality holds if and only if the triangle is equilateral.

�

Mathematics Department, ”Theodor Costescu” National Economic College, Drobeta

Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com


