

TRIANGLE INEQUALITY - 532
ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1) In ΔABC

$$\frac{\cos^2 \frac{A}{2}}{r_a^2} + \frac{\cos^2 \frac{B}{2}}{r_b^2} + \frac{\cos^2 \frac{C}{2}}{r_c^2} \geq \frac{1}{2Rr}$$

Proposed by Adil Abdullayev - Baku - Azerbaijani

Proof.

We prove the following lemma:

Lemma 1.

2) In ΔABC

$$\frac{\cos^2 \frac{A}{2}}{r_a^2} + \frac{\cos^2 \frac{B}{2}}{r_b^2} + \frac{\cos^2 \frac{C}{2}}{r_c^2} = \frac{1}{r^2} - \frac{1}{2Rr} \left(\frac{4R+r}{p} \right)^2.$$

Proof.

Using the following formulas $\cos^2 \frac{A}{2} = \frac{p(p-a)}{bc}$ and $r_a = \frac{S}{p-a}$ we obtain:

$$\begin{aligned} \sum \frac{\cos^2 \frac{A}{2}}{r_a^2} &= \sum \frac{\frac{p(p-a)}{bc}}{\frac{S^2}{(p-a)^2}} = \frac{p}{S^2} \sum \frac{(p-a)^3}{bc} = \frac{p}{r^2 p^2} \cdot \frac{\sum a(p-a)^3}{abc} = \\ &= \frac{1}{r^2 p} \cdot \frac{4Rrp^2 - 2r^2(4R+r)^2}{4Rrp} = \frac{1}{r^2} - \frac{1}{2Rr} \left(\frac{4R+r}{p} \right)^2. \end{aligned}$$

Let's prove inequality 1).

Using Lemma 1 inequality 1) becomes:

$$\frac{1}{r^2} - \frac{1}{2Rr} \left(\frac{4R+r}{p} \right)^2 \geq \frac{1}{2Rr} \Leftrightarrow p^2(2R-r) \geq r(4R+r)^2, \text{ which is true from}$$

Gerretsen's inequality $p^2 \geq 16Rr - 5r^2$. It remains to prove that

$$(16Rr - 5r^2)(2R-r) \geq r(4R+r)^2 \Leftrightarrow 8R^2 - 17Rr + 2r^2 \geq 0 \Leftrightarrow (R-2r)(8R-r) \geq 0$$

obviously from Euler's inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

□

□

Remark.

Let's find an inequality having an opposite sense:

3) In ΔABC

$$\frac{\cos^2 \frac{A}{2}}{r_a^2} + \frac{\cos^2 \frac{B}{2}}{r_b^2} + \frac{\cos^2 \frac{C}{2}}{r_c^2} \leq \left(\frac{1}{R} - \frac{1}{r}\right)^2$$

Proposed by Marin Chirciu - Romania

Proof.

Using **Lemma 1** inequality 3) can be written:

$$\frac{1}{r^2} - \frac{1}{2Rr} \left(\frac{4R+r}{p}\right)^2 \leq \left(\frac{1}{R} - \frac{1}{r}\right)^2 \Leftrightarrow p^2 \leq \frac{R(4R+r)^2}{2(2R-r)}$$

(Blundon - Gerretsen's inequality)

Equality holds if and only if the triangle is equilateral.

□

Remark.

The double inequality can be written:

4. In ΔABC

$$\frac{1}{2Rr} \leq \frac{\cos^2 \frac{A}{2}}{r_a^2} + \frac{\cos^2 \frac{B}{2}}{r_b^2} + \frac{\cos^2 \frac{C}{2}}{r_c^2} \leq \left(\frac{1}{R} - \frac{1}{r}\right)^2.$$

Proof.

See inequalities 1) and 3).

□

Remark.

In the same way we can propose:

5) In ΔABC

$$\frac{1}{R^2p} \leq \frac{\sin^2 \frac{A}{2}}{r_a^2} + \frac{\sin^2 \frac{B}{2}}{r_b^2} + \frac{\sin^2 \frac{C}{2}}{r_c^2} \leq \frac{1}{4r^2p}$$

Proposed by Marin Chirciu - Romania

Proof.

We prove the following lemma:

Lemma 2.6) In ΔABC

$$\frac{\sin^2 \frac{A}{2}}{r_a^2} + \frac{\sin^2 \frac{B}{2}}{r_b^2} + \frac{\sin^2 \frac{C}{2}}{r_c^2} = \frac{1}{2Rrp}$$

Proof.

Using the following formulas $\sin^2 \frac{A}{2} = \frac{(p-b)(p-c)}{bc}$ and $r_a = \frac{S}{p-a}$ we obtain:

$$\sum \frac{\sin^2 \frac{A}{2}}{r_a^2} = \sum \frac{\frac{(p-b)(p-c)}{bc}}{\frac{S^2}{(p-a)^2}} = \frac{\prod(p-a)}{S^2} \sum \frac{1}{bc} = \frac{r^2 p}{r^2 p^2} \cdot \frac{\sum a}{abc} = \frac{1}{p} \cdot \frac{2p}{4Rrp} = \frac{1}{2Rrp}.$$

□

Let's prove the double inequality 5).

Using **Lemma 2** double inequality 5) can be written:

$$\frac{1}{R^2 p} \leq \frac{1}{2Rrp} \leq \frac{1}{4r^2 p} \Leftrightarrow 4r^2 \leq 2Rr \leq R^2 \Leftrightarrow 2r \leq R \text{ (Euler's inequality).}$$

Equality holds if and only if the triangle is equilateral.

□

7) In ΔABC

$$\frac{4}{9R^2} \leq \frac{\tan^2 \frac{A}{2}}{r_a^2} + \frac{\tan^2 \frac{B}{2}}{r_b^2} + \frac{\tan^2 \frac{C}{2}}{r_c^2} \leq \frac{1}{9r^2}$$

Proposed by Marin Chirciu - Romania

Proof.

We prove the following lemma:

Lemma 3.

8) In ΔABC

$$\frac{\tan^2 \frac{A}{2}}{r_a^2} + \frac{\tan^2 \frac{B}{2}}{r_b^2} + \frac{\tan^2 \frac{C}{2}}{r_c^2} = \frac{3}{p^2}$$

Proof.

Using the following formulas $\tan^2 \frac{A}{2} = \frac{(p-b)(p-c)}{p(p-a)}$ and $r_a = \frac{S}{p-a}$ we obtain:

$$\sum \frac{\tan^2 \frac{A}{2}}{r_a^2} = \sum \frac{\frac{(p-b)(p-c)}{p(p-a)}}{\frac{S^2}{(p-a)^2}} = \frac{\prod(p-a)}{S^2 p} \sum 1 = \frac{r^2 p}{r^2 p^3} \cdot 3 = \frac{3}{p^2}.$$

□

Let's prove the double inequality 7).

Using Lemma 3 the double inequality 7) can be written:

$$\frac{4}{9R^2} \leq \frac{3}{p^2} \leq \frac{1}{9r^2} \Leftrightarrow 27r^2 \leq p^2 \leq \frac{27R^2}{4} \text{ (Mitrinović's inequality).}$$

Equality holds if and only if the triangle is equilateral.

□

9) In ΔABC

$$\frac{1}{r^2} \leq \frac{\cot^2 \frac{A}{2}}{r_a^2} + \frac{\cot^2 \frac{B}{2}}{r_b^2} + \frac{\cot^2 \frac{C}{2}}{r_c^2} \leq \frac{4R^2 - 10Rr + 5r^2}{r^4}$$

Proposed by Marin Chirciu - Romania

Proof.

We prove the following Lemma:

10) In ΔABC

$$\frac{\cot^2 \frac{A}{2}}{r_a^2} + \frac{\cot^2 \frac{B}{2}}{r_b^2} + \frac{\cot^2 \frac{C}{2}}{r_c^2} = \frac{p^4 - 16Rrp^2 + 2r^2(4R + r)^2}{r^4 p^2}$$

Proof.

Using the following formulas $\cot^2 \frac{A}{2} = \frac{p(p-a)}{(p-b)(p-c)}$ and $r_a = \frac{S}{p-a}$ we obtain:

$$\begin{aligned} \sum \frac{\cot^2 \frac{A}{2}}{r_a^2} &= \sum \frac{\frac{p(p-a)}{(p-b)(p-c)}}{\frac{S^2}{(p-a)^2}} = \frac{p}{S^2} \sum \frac{(p-a)^3}{(p-b)(p-c)} = \frac{p}{r^2 p^2} \cdot \frac{\sum (p-a)^4}{(p-a)(p-b)(p-c)} = \\ &= \frac{1}{r^2 p} \cdot \frac{\sum (p-a)^4}{\prod (p-a)} = \frac{1}{r^2 p} \cdot \frac{p^4 - 16Rrp^2 + 2r^2(4R + r)^2}{r^2 p} = \frac{p^4 - 16Rrp^2 + 2r^2(4R + r)^2}{r^4 p^2}. \end{aligned}$$

□

Let's prove the double inequality 9.

Using Lemma 3 the double inequality 9) can be written:

$$\frac{1}{r^2} \leq \frac{p^4 - 16Rrp^2 + 2r^2(4R + r)^2}{r^4 p^2} \leq \frac{4R^2 - 10Rr + 5r^2}{r^4}.$$

The first inequality can be transformed equivalently:

$$\begin{aligned} \frac{1}{r^2} \leq \frac{p^4 - 16Rrp^2 + 2r^2(4R + r)^2}{r^4 p^2} &\Leftrightarrow p^4 - 16Rrp^2 + 2r^2(4R + r)^2 \geq r^2 p^2 \Leftrightarrow \\ &\Leftrightarrow p^2(p^2 - 16Rr - r^2) + 2r^2(4R + r)^2 \geq 0. \end{aligned}$$

We distinguish the following cases:

Case 1). If $p^2 - 16Rr - r^2 \geq 0$, the inequality is equivalent.

Case 2). If $p^2 - 16Rr - r^2 < 0$, the inequality can be rewritten:

$p^2(16Rr + r^2 - p^2) \leq 2r^2(4R + r)^2$, which follows from Gerretsen's inequality:

$16Rr - 5r^2 \leq p^2 \leq 4R^2 + 4Rr + 3r^2$. It remains to prove that:

$$\begin{aligned} (4R^2 + 4Rr + 3r^2)(16Rr + r^2 - 16Rr + 5r^2) &\leq 2r^2(4R + r)^2 \Leftrightarrow R^2 - Rr - 2r^2 \geq 0 \Leftrightarrow \\ &\Leftrightarrow (R - 2r)(R + r) \geq 0, \text{ obviously from Euler's inequality } R \geq 2r. \end{aligned}$$

Equality holds if and only if the triangle is equilateral.

Let's prove the second inequality.

$$\begin{aligned} \text{We have } \frac{p^4 - 16Rrp^2 + 2r^2(4R + r)^2}{r^4 p^2} &= \frac{1}{r^4} \left[p^2 - 16Rr + \frac{2r^2(4R + r)^2}{p^2} \right] \leq \\ &\leq \frac{1}{r^4} \left[4R^2 + 4Rr + 3r^2 - 16Rr + \frac{2r^2(4R + r)^2}{\frac{r(4R+r)^2}{R+r}} \right] = \frac{1}{r^4} [4R^2 - 12Rr + 3r^2 + 2r(R+r)] = \end{aligned}$$

$= \frac{4R^2 - 10Rr + 5r^2}{r^4}$, where, above were used inequalities $p^2 \leq 4R^2 + 4Rr + 4r^2$ and

$p^2 \geq \frac{r(4R + r)^2}{R + r}$, true from Gerretsen's inequality.

Equality holds if and only if the triangle is equilateral.

□

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA
TURNU - SEVERIN, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com