

Romanian Mathematical Magazine

Web: <http://www.ssmrmh.ro>

The Author: This article is published with open access.

**PROBLEMS PP 26038, PP 26039
OCTOGON MATHEMATICAL MAGAZINE
ROMANIAN MATHEMATICAL MAGAZINE 2017**

MARIN CHIRCIU

Problem PP 26038 Octogon Mathematical Magazine

1) In ΔABC

$$\sum(m_a + m_b)(m_b + m_c) \leq \frac{1}{2}(11p^2 - 9r^2 - 36Rr).$$

Proposed by Mihály Bencze - Romania

Proof.

Using $\sum m_a^2 = \frac{3}{4} \sum a^2$, $4m_b m_c \leq 2a^2 + bc$, $\sum a^2 = 2(p^2 - r^2 - 4Rr)$ and

$\sum bc = p^2 + r^2 + 4Rr$ we obtain:

$$\begin{aligned} \sum(m_a + m_b)(m_b + m_c) &= \sum m_a^2 + 3 \sum m_b m_c \leq \frac{3}{4} \sum a^2 + \frac{3}{4} \sum (2a^2 + bc) = \frac{3}{4} (3 \sum a^2 + \sum bc) = \\ &= \frac{3}{4} \left[6(p^2 - r^2 - 4Rr) + p^2 + r^2 + 4Rr \right] = \frac{3}{4} (7p^2 - 5r^2 - 20Rr). \end{aligned}$$

The inequality we have to prove can be written:

$$\frac{3}{4} (7p^2 - 5r^2 - 20Rr) \leq \frac{1}{2} (11p^2 - 9r^2 - 36Rr) \Leftrightarrow p^2 \geq 3r(4R + r)$$

which follows from Gerretsen's inequality: $p^2 \geq 16Rr - 5r^2$

It remains to prove that: $16Rr - 5r^2 \geq 3r(4R + r) \Leftrightarrow R \geq 2r$,

obviously from Euler's inequality.

Equality holds if and only if the triangle is equilateral.

□

Remark 1.

Inequality 1) can be developed:

2) In ΔABC

$$\sum(m_a + \lambda m_b)(m_b + \lambda m_c) \leq \frac{\lambda + 1}{4} \left[(5\lambda + 6)p^2 - (\lambda + 2) \cdot 3r(4R + r) \right]$$

where $\lambda \in \mathbb{R}$.

Proposed by Marin Chirciu - Romania

Proof.

$$\begin{aligned}
\sum(m_a + \lambda m_b)(m_b + \lambda m_c) &= \lambda \sum m_a^2 + (\lambda^2 + \lambda + 1) \sum m_b m_c \leq \\
&\leq \lambda \cdot \frac{3}{4} \sum a^2 + (\lambda^2 + \lambda + 1) \cdot \frac{1}{4} \sum (2a^2 + bc) = \\
&= \frac{1}{4} \left[(2\lambda^2 + 5\lambda + 2) \sum a^2 + (\lambda^2 + \lambda + 1) \sum bc \right] = \\
&= \frac{1}{4} \left[(2\lambda^2 + 5\lambda + 2) \cdot 2(p^2 - r^2 - 4Rr) + (\lambda^2 + \lambda + 1)(p^2 + r^2 + 4Rr) \right] = \\
&= \frac{1}{4} \left[(5\lambda^2 + 11\lambda + 5)p^2 - (\lambda^2 + 3\lambda + 1) \cdot 3r(4R + r) \right].
\end{aligned}$$

The inequality we have to prove can be written:

$$\begin{aligned}
\frac{1}{4} \left[(5\lambda^2 + 11\lambda + 5)p^2 - (\lambda^2 + 3\lambda + 1) \cdot 3r(4R + r) \right] &\leq \\
&\leq \frac{\lambda + 1}{4} \left[(5\lambda + 6)p^2 - (\lambda + 2) \cdot 3r(4R + r) \right] \Leftrightarrow \\
\Leftrightarrow p^2 &\geq 3r(4R + r), \text{ which follows from } p^2 \geq 16Rr - 5r^2 \text{ (Gerretsen) and } R \geq 2r \text{ (Euler).}
\end{aligned}$$

Equality holds if and only if the triangle is equilateral.

□

Note

For $\lambda = 1$ we obtain inequality 1).

Problem PP 26039 Octagon Mathematical Magazine

3) In ΔABC

$$\sum \frac{1}{(m_a + m_b)^2} \geq \frac{18}{11p^2 - 9r^2 - 36Rr}.$$

Proposed by Mihály Bencze - Romania

Proof.

We use the inequality $x^2 + y^2 + z^2 \geq xy + yz + zx$, for $x = \frac{1}{m_a + m_b}$, $y = \frac{1}{m_b + m_c}$,

$z = \frac{1}{m_c + m_a}$ and inequality 1). We obtain:

$$\begin{aligned}
\sum \frac{1}{(m_a + m_b)^2} &\geq \sum \frac{1}{(m_a + m_b)(m_b + m_c)} \geq \frac{9}{\sum (m_a + m_b)(m_b + m_c)} \geq \\
&\geq \frac{9}{\frac{1}{2}(11p^2 - 9r^2 - 36Rr)} = \frac{18}{11p^2 - 9r^2 - 36Rr}.
\end{aligned}$$

Equality holds if and only if the triangle is equilateral.

□

Remark 2.

Inequality 3) can be developed:

4) In ΔABC

$$\sum \frac{1}{(m_a + \lambda m_b)^2} \geq \frac{36}{(\lambda + 1)[(5\lambda + 6)p^2 - (\lambda + 2) \cdot 3r(4R + r)]}, \text{ where } \lambda \geq 0.$$

Proposed by Marin Chirciu - Romania

Proof.

We use the inequality $x^2 + y^2 + z^2 \geq xy + yz + zx$,

for $x = \frac{1}{m_a + \lambda m_b}$, $y = \frac{1}{m_b + \lambda m_c}$, $z = \frac{1}{m_c + \lambda m_a}$ and inequality 2). We obtain:

$$\begin{aligned} \sum \frac{1}{(m_a + \lambda m_b)^2} &\geq \sum \frac{1}{(m_a + \lambda m_b)(m_b + \lambda m_c)} \geq \frac{9}{\sum (m_a + \lambda m_b)(m_b + \lambda m_c)} \geq \\ &\geq \frac{9}{\frac{\lambda+1}{4}[(5\lambda+6)p^2 - (\lambda+2) \cdot 3r(4R+r)]} = \frac{36}{(\lambda+1)[(5\lambda+6)p^2 - (\lambda+2) \cdot 3r(4R+r)]}. \end{aligned}$$

Equality holds if and only if the triangle is equilateral.

□

Note

For $\lambda = 1$ we obtain inequality 3).

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com