

PROBLEM PP 26120
OCTOGON MATHEMATICAL MAGAZINE
ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1) In ΔABC

$$\sum r_a(r_b - r_c)^2 \geq \frac{2p^2(p^2 - 3r^2 - 12Rr)}{4R + r}$$

Proposed by Mihály Bencze - Romania

Proof.

We prove the following lemma:

Lemma 1.

2) In ΔABC

$$\sum r_a(r_b - r_c)^2 = 4p^2(R - 2r).$$

Proof.

We have

$$\begin{aligned} \sum r_a(r_b - r_c)^2 &= \sum r_a(r_b^2 + r_c^2 - 2r_b r_c) = \sum r_a(r_b^2 + r_c^2) - 6r_a r_b r_c = \\ &= \sum r_a(r_a^2 + r_b^2 + r_c^2 - r_a^2) - 6r_a r_b r_c = \\ &= \sum r_a \sum r_a^2 - \sum r_a^3 - 6r_a r_b r_c = (4R+r) \left[(4R+r)^2 - 2p^2 \right] - \left[(4R+r)^3 - 12Rrp^2 \right] = 4p^2(R-2r) \end{aligned}$$

□

Let's solve the inequality in the statement.

Using **Lemma 1** the inequality can be written:

$$4p^2(R - 2r) \geq \frac{2p^2(p^2 - 3r^2 - 12Rr)}{4R + r} \Leftrightarrow p^2 \leq 8R^2 - 2Rr - r^2$$

which follows from Gerretsen's inequality: $p^2 \leq 4R^2 + 4Rr + 3r^2$. It remains to prove that:

$$4R^2 + 4Rr + 3r^2 \leq 8R^2 - 2Rr - r^2 \Leftrightarrow 2R^2 - 3Rr - 2r^2 \geq 0 \Leftrightarrow (R - 2r)(2R + r) \geq 0$$

obviously from Euler's inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

□

Remark 1.

The inequality can be developed:

3) In ΔABC

$$\sum r_a(r_b - r_c)^2 \geq \frac{np^2(p^2 - 3r^2 - 12Rr)}{4R + r}, \text{ where } n \leq 4.$$

Proof.

If $n \leq 0$ the inequality is immediate because $p^2 - 3r^2 - 12Rr \geq 0$ true from Gerretsen's inequality: $p^2 \geq 16Rr - 5r^2$ and Euler's inequality $R \geq 2r$.

Next we consider $n > 0$.

Using **Lemma 1** we write the inequality:

$$4p^2(R - 2r) \geq \frac{np^2(p^2 - 3r^2 - 12Rr)}{4R + r} \Leftrightarrow np^2 \leq 16R^2 + (12n - 28)Rr + (3n - 8)r^2$$

which follows from Gerretsen's inequality: $p^2 \leq 4R^2 + 4Rr + 3r^2$ and the condition $n > 0$.

It remains to prove that:

$$\begin{aligned} n(4R^2 + 4Rr + 3r^2) &\leq 16R^2 + (12n - 28)Rr + (3n - 8)r^2 \Leftrightarrow (4 - n)R^2 + (2n - 7)Rr - 2r^2 \geq 0. \\ &\Leftrightarrow (R - 2r)[(4 - n)R + r] \geq 0 \text{ obviously from Euler's inequality } R \geq 2r \\ &\quad \text{and the condition } n \leq 4. \end{aligned}$$

Equality holds if and only if the triangle is equilateral.

□

Note

For $n = 2$ we obtain inequality 1).

Remark 2.

The best inequality having the form of 3) it's obtained for $n = 4$:

4) In ΔABC

$$\sum r_a(r_b - r_c)^2 \geq \frac{4p^2(p^2 - 3r^2 - 12Rr)}{4R + r} \geq \frac{np^2(p^2 - 3r^2 - 12Rr)}{4R + r}$$

Proof.

We use inequality 3) for $n = 4$ and $\frac{4p^2(p^2 - 3r^2 - 12Rr)}{4R + r} \geq \frac{np^2(p^2 - 3r^2 - 12Rr)}{4R + r}$,

true from $p^2 - 3r^2 - 12Rr \geq 0$ and the condition $n \leq 4$.

Equality holds if and only if the triangle is equilateral.

□

Remark 3.

Inequality 3) can also be developed:

5) In ΔABC

$$\sum r_a(r_b - r_c)^2 \geq \frac{np^2(p^2 + (2\lambda - 27)r^2 - \lambda Rr)}{4R + r}, \text{ where } n \leq 4 \text{ and } \lambda \geq 11.$$

Proposed by Marin Chirciu - Romania

Proof.

If $n \leq 0$ the inequality is immediate because $p^2 + (2\lambda - 27)r^2 - \lambda Rr \geq 0$ true from Gerretsen's inequality: $p^2 \geq 16Rr - 5r^2$, Euler's inequality $R \geq 2r$ and the condition $\lambda \geq 11$.

Next we consider $n > 0$.

Using **Lemma 1** we write the inequality:

$$4p^2(R - 2r) \geq \frac{np^2(p^2 + (2\lambda - 27)r^2 - \lambda Rr)}{4R + r} \Leftrightarrow \\ \Leftrightarrow 4(R - 2r)(4R + r) \geq n(p^2 + (2\lambda - 27)r^2 - \lambda Rr)$$

which follows from Gerretsen's inequality: $p^2 \leq 4R^2 + 4Rr + 3r^2$ and the condition $n > 0$.

It remains to prove that:

$$4(R - 2r)(4R + r) \geq n(4R^2 + 4Rr + 3r^2 + (2\lambda - 27)r^2 - \lambda Rr) \Leftrightarrow \\ \Leftrightarrow (16 - 4n)R^2 + (\lambda n - 4n - 28)Rr + (24 - 2\lambda n - 8)r^2 \geq 0 \Leftrightarrow \\ \Leftrightarrow (R - 2r) \left[(16 - 4n)R + (4 + \lambda n - 12n)r \right] \geq 0 \text{ obviously from Euler's inequality } R \geq 2r \\ \text{and the conditions } n \leq 4, \lambda \geq 11.$$

Equality holds if and only if the triangle is equilateral.

□

Note

For $n = 2$ and $\lambda = 12$ we obtain inequality 1), and for $\lambda = 16$ we obtain inequality 5).

Remark 4.

The best inequality having the form of 5) we obtain for $n = 4$ and $\lambda = 11$:

6) In ΔABC

$$\sum r_a(r_b - r_c)^2 \geq \frac{4p^2(p^2 - 5r^2 - 11Rr)}{4R + r} \geq \frac{np^2(p^2 + (2\lambda - 27)r^2 - \lambda Rr)}{4R + r}$$

where $n \leq 4$ and $\lambda \geq 11$.

Proof.

We use inequality 5) for $n = 4$ and $\lambda = 11$ and

$$\frac{4p^2(p^2 - 5r^2 - 11Rr)}{4R + r} \geq \frac{np^2(p^2 + (2\lambda - 27)r^2 - \lambda Rr)}{4R + r} \text{ is true from the condition } n \leq 4 \\ \text{and } p^2 - 5r^2 - 11Rr \geq p^2 + (2\lambda - 27)r^2 - \lambda Rr \Leftrightarrow (\lambda - 11)(R - 2r) \geq 0, \\ \text{and the condition } \lambda \geq 11.$$

Equality holds if and only if the triangle is equilateral.

□

Remark 5.

In the same way we can propose:

7) In ΔABC

$$\sum a(b - c)^2 \geq nS(R - 2r), \text{ where } n \leq 4.$$

Proposed by Marin Chirciu - Romania

Proof.

We prove the following lemma:

Lemma 2

8) In ΔABC

$$\sum a(b-c)^2 = 2p(p^2 + r^2 - 14Rr).$$

Proof.

We have

$$\begin{aligned} \sum a(b-c)^2 &= \sum a(b^2 + c^2 - 2bc) = \sum a(b^2 + c^2) - 6abc = \sum a(a^2 + b^2 + c^2 - a^2) - 6abc = \\ &= \sum a \sum a^2 - \sum a^3 - 6abc = 2p \cdot 2(p^2 - r^2 - 4Rr) - 2p(p^2 - 3r^2 - 6Rr) - 6 \cdot 4Rrp = \\ &= 2p(p^2 + r^2 - 14Rr). \end{aligned}$$

□

Let's solve the proposed inequality.

Using **Lemma 2** we write the inequality:

$$2p(p^2 + r^2 - 14Rr) \geq nrp(R - 2r), \text{ which follows from Gerretsen's inequality: } p^2 \geq 16Rr - 5r^2$$

It remains to prove that:

$$4r(R - 2r) \geq nr(R - 2r) \Leftrightarrow (4 - n)(R - 2r) \geq 0, \text{ obviously from Euler's inequality } R \geq 2r$$

and the condition $n \leq 4$.

Equality holds if and only if the triangle is equilateral.

□

Remark 6.

The best inequality having the form of 7) it's obtained for $n = 4$:

9) In ΔABC

$$\sum a(b-c)^2 \geq 4S(R - 2r) \geq nS(R - 2r), \text{ where } n \leq 4.$$

Proof.

See inequality 7) for $n = 4$, and $4S(R - 2r) \geq nS(R - 2r) \Leftrightarrow (4 - n)(R - 2r) \geq 0$,

obviously from $n \leq 4$ and $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

□

10) In ΔABC

$$\sum h_a(h_b - h_c)^2 \geq \frac{nS^2(R - 2r)}{R^2}, \text{ where } n \leq 2.$$

Proposed by Marin Chirciu - Romania

Proof.

We prove the following lemma:

Lemma 3.
11) In ΔABC

$$\sum h_a(h_b - h_c)^2 = \frac{rp^2(p^2 + r^2 - 14Rr)}{R^2}$$

Proof.

We have:

$$\begin{aligned} \sum h_a(h_b - h_c)^2 &= \sum h_a(h_a^2 + h_c^2 - 2h_bh_c) = \sum h_a(h_b^2 + h_c^2) - 6h_a h_b h_c = \\ &= \sum h_a(h_a^2 + h_b^2 + h_c^2 - h_a^2) - 6abc = \\ &= \sum h_a \sum h_a^2 - \sum h_a^3 - 6h_a h_b h_c = \frac{rp^2(p^2 + r^2 - 14Rr)}{R^2}, \text{ the last equality follows from:} \\ &\sum h_a = \frac{p^2 + r^2 + 4Rr}{2R}, \sum h_a^2 = \left(\sum h_a\right)^2 - 2 \sum h_b h_c, \sum h_b h_c = \frac{2rp^2}{R} \\ &\sum h_a^3 = \left(\sum h_a\right)^3 - 3 \prod(h_b + h_c), \prod(h_b + h_c) = \frac{rp^2(p^2 + r^2 + 4Rr)}{R^2} \end{aligned}$$

□

Let's solve the proposed inequality.

Using **Lemma 3** we write the inequality:

$$\frac{rp^2(p^2 + r^2 - 14Rr)}{R^2} \geq \frac{nr^2p^2(R - 2r)}{R^2} \Leftrightarrow p^2 + r^2 - 14Rr \geq nr(R - 2r)$$

which follows from Gerretsen's inequality: $p^2 \geq 16Rr - 5r^2$. It remains to prove that:

$$16Rr - 5r^2 + r^2 - 14Rr \geq nr(R - 2r) \Leftrightarrow 2r(R - 2r) \geq nr(R - 2r) \Leftrightarrow (2 - n)(R - 2r) \geq 0,$$

obviously from Euler's inequality $R \geq 2r$ and the condition $n \leq 2$.

Equality holds if and only if the triangle is equilateral.

□

Remark 7.

The best inequality having the form of **10**) it's obtained for $n = 2$:

12. In ΔABC

$$\sum h_a(h_b - h_c)^2 \geq \frac{2S^2(R - 2r)}{R^2} \geq \frac{nS^2(R - 2r)}{R^2}, \text{ where } n \leq 4.$$

Proof.

See inequality **10**) for $n = 2$, and $\frac{2S^2(R - 2r)}{R^2} \geq \frac{nS^2(R - 2r)}{R^2} \Leftrightarrow (2 - n)(R - 2r) \geq 0$,

obviously from $n \leq 2$ and $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

□

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA
TURNU - SEVERIN, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com