
ROMANIAN MATHEMATICAL MAGAZINE

Founding Editor
DANIEL SITARU

Available online
www.ssmrmh.ro

ISSN-L 2501-0099

Math Adventures on CutTheKnot Math 151-200



MATH ADVENTURES
ON

CutTheKnotMath

151 - 200

By Alexander Bogomolny and Daniel Sitaru

http://www.cut-the-knot.org
http://www.ssmrmh.ro

1

http://www.cut-the-knot.org
http://www.ssmrmh.ro


2



3

Proposed by

Daniel Sitaru - Romania
Nassim Nicholas Taleb – USA

Phan Kim Hung - Vietnam
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151. An Inequality with Two Cyclic Sums

If a, b, c > 0, and abc = 1 then∑∑∑
cylc

(a+ 3
√
a+

3
√
a2) ≥ 9

∑∑∑
cycl

1

1 +
3
√
b2 + 3

√
c
.

Proposed by Daniel Sitaru

Solution (by Nguyen Tien Lam).

Let 3
√
a = x, 3

√
b = y, 3

√
c = z. Then still xyz = 1, x, y, z > 0.

By the Cauchy - Schwarz inequality,

(1 + y2 + z)(x2 + 1 + z) ≥ (x+ y + z)2 ≥ 32 = 9,

implying 9
1+y2+z ≤ x

2 + 1 + z. Similarly, 9
1+z2+x ≤ y

2 + 1 + x and
9

1+x2+y ≤ z
2 + 1 + y. Adding the three gives,

9
∑
cycl

1

1 + y2 + x
≤ 3 +

∑
cycl

x+
∑
cycl

x2

≤
∑
cycl

x3 +
∑
cycl

x+
∑
cycl

x2

=
∑
cycl

a+
∑
cycl

3
√
a+

∑
cycl

a2

=
∑
cycl

(a+
3
√
b2 + c)

and this is the required inequality. �
Acknowledgment (by Alexander Bogomolny)

This problem from the Romanian Mathematical Magazine has been kindly
posted at CutTheKnotMath facebook page by Daniel Sitaru. The above solu-
tion is by Nguyen Tien Lam.

152. An Inequality with Constraint in Four Variables IV

If a, b, c, d > 0 and a+ b+ c+ d = 3 then

27 + 3(abc+ bcd+ cda+ dab) ≥
∑∑∑
cycl

a3 + 54
√
abcd

Proposed by Daniel Sitaru

Solution 1 (by Kevin Soto Palacios).

(x+ y)3 = x3 + y3 + 3xy(x+ y). With x = a+ b and y = c+ d we have(∑
cycl

a

)3

= (a+ b)3 + (c+ d)3 + 3(a+ b)(c+ d)
∑
cycl

a⇔

27 =
∑
cycl

a3 + 3ab(a+ b) + 3cd(c+ d) + 9(a+ b)(c+ d)⇔

27 =
∑
cycl

a3 + 3ab(a+ b) + 3cd(c+ d) + 9(ac+ ad+ bc+ bd)⇔

27 + 3
∑
cycl

abc =
∑
cycl

a3 + 3ab
∑
cycl

a+ 3cd
∑
cycl

a+ 9(ac+ ad+ bc+ bd)⇔
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27 + 3
∑
cycl

abc =
∑
cycl

a3 + 9
∑
all

ab

Suffice it to show that 9
∑
cycl ab ≥ 54

√
abcd. But this is true by the AM-GM

inequality . �
Solution 2 (by Leonard Giugiuc).

Denote s3 =
∑
cycl abc and s3 =

∑
cycl a

3 and homogenise using the constraint:(∑
cycl

a

)3

+3s3 ≥ S3 + 18

(∑
cycl

a

)
√
abcd

Now, recollect one of Newton’s identities:

S3 =

(∑
cycl

a

)(∑
cycl

a2

)
−

(∑
cycl

a

)(∑
all

ab

)
+3s3

This leads to an equivalent inequality:(∑
cycl

a

)3

+

(∑
cycl

a

)(∑
cycl

ab

)
−

(∑
cycl

a

)(∑
cycl

a2

)
≥ 18

(∑
cycl

a

)
√
abcd

This is equivalent to(∑
cycl

a

)[
3

(∑
all

ab

)]
≥ 18

(∑
cycl

a

)
√
abcd

and, finally, to ∑
all

ab ≥ 6
√
abcd

which is true by the AM – GM inequality.
Note the equality is reached for a = b = c = d = 3

4 or (3, 0, 0, 0) and
permutations. �

Acknowledgment (by Alexander Bogomolny)
This problem from the Romanian Mathematical Magazine has been kindly
posted by Daniel Sitaru at the CutTheKnotMath facebook page . Solution 1 is
by Kevin Soto Palacios; Solution 2 is by Leo Giugiuc.

153. Dan Sitaru’s Inequality by Induction

Prove that if a, b, c, d ≥ 0 then
3

a+ 1
+

3

b+ 1
+

2

c+ 1
+

1

d+ 1
≤ 6+

1

a+ b+ 1
+

1

a+ b+ c+ 1
+

1

a+ b+ c+ d+ 1
Proposed by Daniel Sitaru

Solution (by Daniel Sitaru).
Let P (n) be the statement:

If xk ≥ 1, k = 1, . . . , n, then

x1 + x2 + . . .+ xn ≤ n− 1 + x1x2 . . . xn

We prove P (n) by induction .
For n = 1, x1 ≥ 1− 1 + x1, which is obviously true.
For n = 2, x1 + x2 ≤ 2− 1 + x1x2 is equivalent to (x1 − 1)(x2 − 1) ≥ 0,
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which is true because x1, x2 ≥ 1.
Now assume that for n = k ≥ 2, P (k) is true and let there be numbers
x1, . . . , xk, xk+1 ≥ 1. We wish to prove that P (k + 1) is true, i.e.,

x1 + x2 + . . .+ xk + xk+1 ≤ k + x1x2 . . . xkxk+1

holds. By the inductive assumption.

x1 + x2 + . . .+ xk ≤ k − 1 + x1x2 . . . xk

and, therefore,

x1 + x2 + . . .+ xk + xk+1 ≥ k − 1 + x1x2 . . . xk + xk+1.

Suffice it to prove that

k − 1 + x1x2 . . . xk + xk+1 ≤ k + x1x2 . . . xkxk+1.

i.e.,
x1x2 . . . xk + xk+1 ≤ 1 + x1x2 . . . xkxk+1

But this is equivalent to 0 ≤ x1x2 . . . xk(xk+1 − 1)− (xk+1 − 1), i.e.,

(x1x2 . . . xk − 1)(xk+1 − 1) ≥ 0,

which is obviously true. This completes the induction.
Now, in particular, for n = 2, 3, 4, we have

x1 + x2 ≤ 1 + x1x2

x1 + x2 + x3 ≤ 2 + x1x2x3

x1 + x2 + x3 + x4 ≤ 3 + x1x2x3x4

By adding:

3x1 + 3x2 + 2x3 + x4 ≤ 6 + x1x2 + x1x2x3 + x1x2x3x4

Setting x1 = ta;x2 = tb;x3 = tc;x4 = td leads to

3ta + 3tb + 2tc + td ≤ 6 + ta+b + ta+b+c + ta+b+c+d.

The inequality is preserved after integration:

3

∫ 1

0

tadt+ 3

∫ 1

0

tbdt+ 2

∫ 1

0

tcdt+

∫ 1

0

tddt

≤ 6 +

∫ 1

0

ta+bdt+

∫ 1

0

ta+b+cdt+

∫ 1

0

ta+b+c+ddt

which is the required inequality

3

a+ 1
+

3

b+ 1
+

2

c+ 1
+

1

d+ 1
≤ 6 +

1

a+ b+ 1
+

1

a+ b+ c+ 1
+

1

a+ b+ c+ d+ 1

�
Acknowledgment (by Alexander Bogomolny)

This problem from the Romanian Mathematical Magazine has been kindly
posted at the CutTheKnotMath facebook page by Daniel Sitaru. He later
mailed his solution in a LaTex file.
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154. Dan Sitaru’s Integral Inequality with Powers of a Function

Assume f : [0,1]→ [0,∞) is Riemann integrable and bounded. (Then the same

holds for its integer powers.) Assume also that∫∫∫ 1

0

f3(x)dx =
7
√

2

Prove that(∫∫∫ 1

0

f5(x)dx

)(∫∫∫ 1

0

f7(x)dx

)(∫∫∫ 1

0

f9(x)dx

)
≥ 2

Proposed by Daniel Sitaru

Solution 1(by Daniel Sitaru).
Using repeatedly the Cauchy – Schwarz inequality ,(∫ 1

0

f5(x)dx

)(∫ 1

0

f7(x)dx

)(∫ 1

0

f9(x)dx

)(∫ 1

0

f3(x)dx

)

=

∫ 1

0

(
f2
√
f(x)

)2

dx ·
∫ 1

0

(
f3
√
f(x)

)2

dx·

·
∫ 1

0

(
f4
√
f(x)

)2

dx ·
∫ 1

0

(
f
√
f(x)

)2

dx

≥

(∫ 1

0

f6(x)dx
)2

·

(∫ 1

0

f6(x)dx

)2

=

[(∫ 1

0

f6(x)dx

)
·

(∫ 1

0

12dx

)]2

≥

(∫ 1

0

f3(x)dx

)8

=
7
√

28

so that

7
√

2

(∫ 1

0

f5(x)dx

)(∫ 1

0

f7(x)dx

)(∫ 1

0

f9(x)dx

)
≥ 7
√

28

In other words,(∫ 1

0

f5(x)dx

)(∫ 1

0

f7(x)dx

)(∫ 1

0

f9(x)dx

)
≥ 2

Equality is attained for f(x) ≡ 21
√

2. �
Solution 2(by Chris Kyriazis).

By Hölder’s inequality,(∫ 1

0

fn(x)dx

) 3
n
(∫ 1

0

dx

)n−3
2n
(∫ 1

0

dx

)n−3
2n

≥
∫ 1

0

f3(x)dx =
7
√

2,

implying, in particular, ∫ 1

0

f5(x)dx ≥ 21
√

25,∫ 1

0

f7(x)dx ≥ 21
√

27,∫ 1

0

f9(x)dx ≥ 21
√

29.
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Multiplying the three we have(∫ 1

0

f5(x)dx

)(∫ 1

0

f7(x)dx

)(∫ 1

0

f9(x)dx

)
≥ 21
√

25+7+9 = 2.

�
Solution 3(by Amit Itagi).

Consider the convex function g(x) = xk with k > 1. Applying Jensen’s
inequality (noting that powers of f are non-negative and Riemann – integrable),

g

(∫ 1

0

f3(x)dx

)
≤
∫ 1

0

g
(
f3(x)

)
dx

⇒

(∫ 1

0

f3(x)

)k
≤
∫ 1

0

f3k(x)dx

Multiplying the inequalities for k = 5
3 ,

7
3 ,

9
3 together,

2 =

(∫ 1

0

f3(x)dx

)7

≤

(∫ 1

0

f5(x)dx

)(∫ 1

0

f7(x)dx

)(∫ 1

0

f9(x)dx

)
�

Solution 4 (by N. N. Taleb).
By Hölder inequality,(∫ 1

0

f3p(x)dx

) 1
p
(∫ 1

0

1qdx

) 1
q

≥
∫ 1

0

f3(x)dx

Hence,
∫ 1

0
f3p(x)dx ≥ ( 7

√
2)p.

Allora, taking p =
{

5
3 ,

7
3 ,

9
3

}
and merging, we get the result.

�
Acknowledgment (by Alexander Bogomolny)

This problem from the Romanian Mathematical Magazine has been kindly
posted at the CutTheKnotMath facebook page by Daniel Sitaru. He later
mailed his solution (Solution 1) in LaTex file, along with a solution (Solution 2) by
Chris Kyriazis (Greece). Solution 3 is by Amit Itagi; Solution 4 is by N. N. Taleb.

155. An Inequality in Three (Or Is It Two) Variables

If x, y > 0; z ∈ R then:

(x+ y)2

(x sin2 z + y cos2 z)(x cos2 z + y sin2 z)
+
x

y
+
y

x
≥ 6.

Proposed by Daniel Sitaru

Solution 1 (by Daniel Sitaru).
Denote sin2 z = a; cos2 z = b. Then

x

ay + bz
+

y

az + bx
+

z

ax+ by
=

=
x2

axy + bxz
+

y2

ayz + bxy
+

z2

axz + byz
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≥ (x+ y + z)2

(xy + yz + zx)(a+ b)

≥ 3(xy + xz + yz)

(xy + yz + zx)(a+ b)
=

3

a+ b

so that

(1)
x

ay + bz
+

y

az + bx
+

z

az + by
≥ 3

a+ b

For z = x in (1):

x(ay + by) + x(ay + bx)

(ay + bx)(ax+ by)
+

y

x(a+ b)
≥ 3

a+ b

x(ax+ ay + bx+ by)

(ay + bx)(ax+ by)
+

y

x(a+ b)
≥ 3

a+ b

(2)
x(a+ b)(x+ y)

(ax+ by)(bx+ ay)
+

1

a+ b
· y
x
≥ 3

a+ b

Similarly, with z = y in (1):

(3)
y(a+ b)(x+ y)

(ax+ by)(bx+ ay)
+

1

a+ b
· x
y
≥ 3

a+ b

By adding (2) and (3):

(4)
(a+ b)(x+ y)2

(ax+ by)(bx+ ay)
+

1

a+ b

(x
y

+
y

x

)
≥ 6

a+ b

Now, replace back a = sin2 z; b = cos2 z in (4):

(sin2 z + cos2 z)(x+ y)2

(x sin2 z + y cos2 z)(x cos2 z + y sin2 z)
+
x

y
+
y

x
≥ 6

Equality holds for x = y. �
Solution 2(by Alexander Bogomolny).

Let’s prove a little more general result:

If x, y, z, b > 0 and a+ b = 1 :

(x+ y)2

(xa+ yb)(xb+ ya)
+
x

y
+
y

x
≥ 6.

By the AM-GM inequality ab ≤ 1
4 and a2 + b2 ≤ 1

2 (a+ b)2 = 1
2 . Using that

(xa+ yb)(xb+ ya) = x2ab+ xyb2 + xya2 + y2ab

≤ 1

4
(x2 + y2) +

1

2
xy =

1

4
(x+ y)2

Thus
(x+ y)2

(x sin2 z + y cos2 z)(x cos2 z + y sin2 z)
+
x

y
+
y

x

≥ (x+ y)2

(x+y)2

4

+
x

y
+
y

x
= 4 + 2 = 6.

�
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Solution 3(by Ravi Prakash, Kevin Soto Palacios).
Let a = x sin2 z + y cos2 z, b = y sin2 z + x cos2 z. Then x + y = a + b and the
inequality to prove becomes

(a+ b)2

ab
+
x

y
+
y

x
≥ 6.

This is the same as
a

b
+
b

a
+ 2 +

x

y
+
y

x
≥ 2 + 2 + 2 = 6.

�
Acknowledgment (by Alexander Bogomolny)

This problem from the Romanian Mathematical Magazine has been kindly
posted at the CutTheKnotMath facebook page by Daniel Sitaru. He later
mailed his solution (Solution 1) in a LaTeX file. Solution 3 is by Ravi Prakash and
independently by Kevin Soto Palacios.

156. An Inequality in Four Weighted Variables

Let a, b, c, d > 0. Then:

(a+ c)c(b+ d)d(c+ d)c+d ≤ ccdd(a+ b+ c+ d)c+d

Proposed by Daniel Sitaru

Solution 1( by Kevin Soto Palacios).
The inequality is equivalent to(a+ b+ c+ d

c+ d

)c+d
≥
(a+ c

c

)c(b+ d

d

)d
,

or, (a+ b+ c+ d

c+ d

)c+d
≥
(a
c

+ 1
)c( b

d
+ 1
)d

Now, by the weighted AM-GM inequality ,

(ac + 1)c+ ( bd + 1)d

c+ d
≥ c+d

√(a
c

+ 1
)c( b

d
+ 1
)d
,

i.e., (a+ b+ c+ d

c+ d

)c+d
≥
(a
c

+ 1
)c( b

d
+ 1
)d

QED. �
Solution 2(by Amit Itagi).

Let p = a+ c and q + b+ d. Noting that the log function is concave, Jensen’s
inequality implies

c

c+ d
log
(p
c

)
+

d

c+ d
log
( q
d

)
≤ log

(p+ q

c+ d

)
.

The arguments lie in the domain of the log function as p > c and q > d.
Applying the monotonically increasing exponential function to both sides,(p

c

) c
c+d
( q
d

) d
c+d ≤

(p+ q

c+ d

)
⇒
(p
c

)c( q
d

)d
≤
(p+ q

c+ d

)c+d
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⇒ pcqd(c+ d)c+d ≤ ccdd(p+ q)c+d

⇒ (a+ c)c(b+ d)d(c+ d)c+d ≤ ccdd(a+ b+ c+ d)c+d

�
Solution 3( by Daniel Sitaru).

Define f : (0,∞)→ R, with f(x) = log(x+ 1). We have, f ′(x) = 1
x+1 ;

f ′′(x) = −1
(x+1)2 < 0; so that f is concave. By Jensen’s inequality,

c log
(

1 +
a

c

)
+ d log

(
1 +

b

d

)
= (c+ d)

( c

c+ d
log
(

1 +
a

c

)
+

d

c+ d
log
(

1 +
b

d

))
≤ (c+ d) log

(
1 +

c

c+ d
· a
c

+
d

c+ d
· b
d

)
= (c+ d) log

(
1 +

a

c+ d
+

b

c+ d

)
= log

(
1 +

a+ b

c+ d

)c+d
Further

log

[(
1 +

a

c

)c
·
(

1 +
b

d

)d]
≤ log

(a+ b+ c+ d

c+ d

)c+d
(

1 +
a

c

)c
·
(

1 +
b

d

)d
≤
(a+ b+ c+ d

c+ d

)c+d
( c+ d

a+ b+ c+ d

)c+d
·
(

1 +
a

c

)c
·
(

1 +
b

d

)d
≤ 1

(a+ c)c · (b+ d)d · (c+ d)c+d ≤ cc · dd(a+ b+ c+ d)c+d.

�
Acknowledgment (by Alexander Bogomolny)

This problem by Daniel Sitaru from the Romanian Mathematical Magazine
has been kindly posted at the CutTheKnotMath facebook page by Kevin Soto
Palacios (Peru), along with his solution. Solution 2 is by Amit Tagi; Solution 3 is
by Daniel Sitaru.

157. An Inequality with Cyclic Sums on Both Sides

Let a, b, c > 0. Then:∑∑∑
cycl

a9

b6c2
≥
∑∑∑
cycl

6

√
a28

b17c5
.

Proposed by Daniel Sitaru

Solution 1( by Ravi Prakash).
Observe that, by the AM-GM inequality,

4 · a
9

b6c2
+

b9

c6a2
+

c9

a6b2
≥
( a36

b24c8
· b9

c6a2
· c9

a6b2

) 1
6

= 6
( a28

b17c5

) 1
6

,

a9

b6c2
+ 4

b9

c6a2
+

c9

a6b2
≥ 6
( b28

c17a5

) 1
6

,

a9

b6c2
+

b9

c6a2
+ 4

c9

a6b2
≥ 6
( c28

a17b5

) 1
6

.

Adding up and dividing by 6 yields the required inequality. �
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Solution 2 (by Kevin Soto Palacios).
The required inequality is equivalent to∑

cycl

a9

b6c2
≥ 6
√
abc
∑
cycl

√
a9

b6c2
.

By the AM-GM inequality ,

(A)
a9

b6c2
+

b9

c6a2
+

c9

a6b2
≥ 3

3
√
abc.

By the Cauchy - Schwarz inequality ,

(B) 3
( a9

b6c2
+

b9

c6a2
+

c9

a6b2

)
≥

(√
a9

b6c2
+

√
b9

c6a2
+

√
c9

a6b2

)2

.

Multiplying (A) and (B) we obtain( a9

b6c2
+

b9

c6a2
+

c9

a6b2

)2

≥ 3
√
abc

(√
a9

b6c2
+

√
b9

c6a2
+

√
c9

a6b2

)2

which is the same as ∑
cycl

a9

b6c2
≥ 6
√
abc
∑
cycl

√
a9

b6c2

�
Solution 3(by Amit Itagi).

Let a = x6, b = y6, c = z6. The inequality can be written as∑
cycl

x54

y36z12
≥
∑
cycl

x28

y17z5
.

This is equivalent to ∑
cycl

x90z24

y36y36z36
≥
∑
cycl

x64y19

z31
x36y36z36.

Or, ∑
cycl

x90z24 ≥
∑
cycl

x64y19,

which follows from Muirhead’s inequality . �
Solution 4 (by Nassim Nicolas Taleb).

Rewriting

LHS =
a4b15 + a15 + c4 + b4c15

a6b6c6
, RHS =

a2b
15
2 + a

15
2 c2 + b2c

15
2

a
17
6 b

17
6 c

17
6

.

By the power-mean inequality,

a4b15 + a15c4 + b4c15

a6b6c6
≥

(
a2b

15
2 + a

15
2 c2 + b2c

15
2

)2

3a6b6c6
.

Thus, suffice it to prove that(
a2b

15
2 + a

15
2 c2 + b2c

15
2

)2

3a6b6c6
≥ a2b

15
2 + a

15
2 c2 + b2c

15
2

a
17
6 b

17
6 c

17
6

,
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or that

(a2b
15
2 + a

15
2 c2 + b2c

15
2

)(
a2b

15
2 + a

15
2 c2 + b2c

15
2 − 3a

19
6 b

19
6 c

19
6

)
3a6b6c6

≥ 0.

The latter inequality is equivalent to

a2b
15
2 + a

15
2 c2 + b2c

15
2 ≥ 3a

19
6 b

19
6 c

19
6

which is true, since by the AM-GM inequality,

a2b
15
2 + a

15
2 c2 + b2c

15
2

3
≥

3
√
a

19
2 b

19
2 c

19
2 = a

19
6 b

19
6 c

19
6 .

�
Acknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly posted a problem of his from the Romanian Mathe-
matical Magazine at the CutTheKnotMath facebook page . Solution 1 is by
Ravi Prakash (India); Solution 2 is by Kevin Soto Palacios (Peru); Solution 3 is by
Amit Itagi (USA); Solution 4 is by N. N. Taleb.

158. Inequalities with Double And Triple Integrals

Prove that:

(A)

∫ π
2

0

∫ π
2

0

cos
(x+ y

2

)
dxdy ≥

π

2

(B)

∫ π
2

0

∫ π
2

0

∫ 1

0

cos(xz + y(1− z))dxdydz ≥
π

2

Proposed by Daniel Sitaru

Solution 1 (by Quang Minh Tran).

For all z ∈ [0, 1] and x, y ∈
[
0, π2

]
, Jensen’s inequality gives

cos(zx+ (1− z)y) ≥ z cosx+ (1− z) cos y

We have ∫ π
2

0

∫ π
2

0

cos(zx+ (1− z)y)dxdy

≥ z
∫ π

2

0

∫ π
2

0

cos dxdy + (1− z)
∫ π

2

0

∫ π
2

0

cos ydxdy

= z
π

2
+ (1− z)π

2
=
π

2
.

Taking z = 1
2 solves (A).

Further,
∫ 1

0

∫ π
2

0

∫ π
2

0
cos(xy + y(1− z))dxxy ≥

∫ 1

0
π
2 = π

2 which solves (B).
�

Solution 2(by Michel Rebeiz).∫ π
2

0

∫ π
2

0

cos
(x+ y

2

)
dxdy =

∫ π
2

0

2
[

sin
(x+ y

2

)]π
2

0
dy

= 2

∫ π
2

0

[
sin

(
π
2 + y

2

)
− sin

(y
2

)]
dy
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= 2

[
−2 cos sin

(
π
2 + y

2

)
+2 cos

(y
2

)]π2
0

= 4
[
− sin

π

2
+ sin

π

4
+ cos

π

4
− cos 0

]
= 4

[√
2

2
+

√
2

2
− 1

]
= 4(
√

2− 1) >
π

2
.

This solves (A). �
Solution 3(same solution by Rozeta Atanasova, Soumitra Mandal, Nassim Nicolas Taleb).∫ π

2

0

∫ π
2

0

cos
(x+ y

2

)
dxdy

=

∫ π
2

0

cos
x

2
dx

∫ π
2

0

cos
y

2
dy −

∫ π
2

0

sin
x

2
dx

∫ π
2

0

y

2
dy

= 4

(
sin2 π

2
−
(

cos
π

4
− cos 0

)2
)

= 4(
√

2− 1) >
π

2

This solves (A) �
Acknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly posted a problem of his from the Romanian Mathe-
matical Magazine at the CutTheKnotMath facebook page . Solution 1 is
by Quang Minh Tran; Solution 2 is by Michel Rebeiz; Solution 3 is by Rozeta
Atanasova; Diego Alvariz and N. N. Taleb have independently come with Solution
1.

159. Minimum of a Cyclic Sum with Logarithms

Define, for a, b, c > 1,

Ω(a, b, c) =
∑∑∑
cycl

log2
a b+ loga b · logb c+ log2

b c

loga b+ logb c

Find min Ω(a, b, c).

Proposed by Daniel Sitaru

Solution 1 (same solution by Subhajit Chattopadhyay and Geanina Tudose).

Let loga b = x, logb c = y, logc a = z. Clearly x, y, z = 1. In terms of x, y, z
the function becomes, say,

Ω(a, b, c) = Ω′(x, y, z) =
∑
cycl

x2 + xy + y2

x+ y

=
∑
cycl

(x+ y)2 − xy
x+ y

= 2(x+ y + z)−
( xy

x+ y
+

yz

y + z
+

zx

z + x

)
Now, by the AM-HM inequality , − xy

x+y ≥ −
x+y

2 , such that

Ω′(x, y, z) = 2(x+ y + z)−
( xy

x+ y
+

yz

y + z
+

zx

z + x

)
≥ 2(x+ y + z)− 2

4
(x+ y + z) =

3

2
(x+ y + z)
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≥ 9

2
3
√
xyz =

9

2

Since equality is attained for x = y = z = 1,min Ω′(x, y, z) = 9
2 , implying

min Ω(a, b, c) = 9
2 , attained for a = b = c. �

Solution 2 (by Kevin Soto Palacios).
With the same notation as in Solution 1, and using the AM-GM inequality,∑

cycl

x2 + xy + y2

x+ y
≥
∑
cycl

3(x+ y)2

4(x+ y)

=
∑
cycl

3

4
(x+ y) =

3

2
(x+ y + z)

≥ 9

2
3
√
xyz =

9

2
.

Equality occurs for x = y = z = 1. �
Solution 3 (by Nassim Nicolas Taleb).

We expand Ω(a, b, c) =
∑
cycl

log2 a

log2 b
+ log c

log a+ log2 c

log2 b
log b
log a+ log c

log b

Now let x = log a, y = log b, z = log c. The function transforms to

Ω2(x, y, z) =
∑
cycl

y2

x2 + x2

z2 + y
x

y
x + y

z

x4 + y2z2 + xyz

x3z + xyz2

By the AM-GM inequality,∑
cycl

x4 + y2z2 + xyz

x3z + xyz2
≥ 3 3

√√√√∏
cycl

x4 + x2yz + y2z2

x4 + x2yz

Now, using x4 + x2yz + y2z2 ≥ 3
4 (x2 + yz)2,

3 3

√√√√∏
cycl

x4 + x2yz + y2z2

x4 + x2yz
≥ 3 3

√√√√∏
cycl

3

4
· (x2 + yz)2

x4 + x2yz

=
9

4
· (y2 + xz)

1
3 (x2 + zy)

1
3 (z2 + xy)

1
3

x
2
3 y

2
3 z

2
3

.

Now, with the AM-GM inequality,

9

4
· (y2 + xz)

1
3 (x2 + zy)

1
3 (z2 + xy)

1
3

x
2
3 y

2
3 z

2
3

≥ 9

4
· (2
√
y2xz)

1
3 (2
√
x2zy)

1
3 (2
√
z2xy)

1
3

x
2
3 y

2
3 z

2
3

=
9

4
· 2 · x 2

3 y
2
3 z

2
3

x
2
3 y

2
3 z

2
3

=
9

2
.

�
Acknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly posted a problem of his from the Romanian Mathe-
matical Magazine at the CutTheKnotMath facebook page . Solution 1 is by
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Subhajit Chattopadhyay and, independently, by Geanina Tudose; Solution 2 is by
Kevin Soto Palacios; Solution 3 is by N.N. Taleb.

160. A System of Two Equations Replete with Squares

Solve for real numbers:
x2

25
+ y2

16
= 1

x2 + y2 =
(

x2

5
+ y2

4

)2
Proposed by Daniel Sitaru

Solution (by Seyran Ibrahimov).
Let, for simplicity, a = x2, b = y2. The system can be written as{

16a+ 25b = 400

a+ b = (4a+5b)2

400

The second equation transforms into 400(a + b) = (4a + 5b)2. Replacing 400
from the first equation gives

(16a+ 25b)(a+ b) = (4a+ 5b)2,

i.e.,

16a2 + 25ab+ 16ab+ 25b2 = 16a2 + 40ab+ 25b2,

which simplifies to ab = 0, same as xy = 0. Note that x, y can’t vanish
simultaneously. Thus two cases: either x = 0 or y = 0. The first case gives
solutions (0,±4), the second (±5, 0). �

Acknowledgment (by Alexander Bogomolny)
Daniel Sitaru has kindly posted the above problem of his from the Romanian
Mathematical Magazine at the CutTheKnotMath facebook page , along with
the above solution by Seyran Ibrahimov.

161. Dan Sitaru’s Cyclic Inequality In Three Variables with
Constraints II

Assume x, y, z > 0 and x2 + y2 + z2 = 12. Prove that∑∑∑
cycl

x
y

+ 1 + y
x

1
x

+ 1
y

≤ 9.

Proposed by Daniel Sitaru

Solution 1 (by Daniel Sitaru).
We first prove that

For x, y > 0,

x2 + xy + y2

x+ y
≤ 3

2

√
x2 + y2

2
.

For a proof, we have a sequence of equivalent inequalities:

(x2 + xy + y2)2

(x+ y)2
≤ 9

8
(x2 + y2)

8(x2 + xy + y2) ≤ 9(x2 + y2)(x+ y)2
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x4 + y4 − 6x2y2 + 2x3y + 2xy3 ≥ 0

(x2 − y2)2 + 2x3y − 2x2y2 + 2xy3 − 2x2y2 ≥ 0

(x2 − y2)2 + 2x2y(x− y)− 2xy2(x− y) ≥ 0

(x2 − y2)2 + 2yx(x− y)2 ≥ 0

which is true since x, y > 0. Using that and the Cauchy - Schwarz inequality ,∑
cycl

x
y + 1 + y

x
1
x + 1

y

=
∑
cycl

x2 + xy + y2

x+ y

≤ 3

2

∑
cycl

√
x2 + y2

2
≤ 3

2

√√√√(12 + 12 + 12)
∑
cycl

x2 + y2

2

=
3

2

√
3
∑
cycl

x2 =
3

2

√
3 · 12 =

3

2
· 6 = 9.

�
Solution 2 (by Leonard Giugiuc).

Started with (x− y)2(x2 + 4xy + y2) we arrive through a chain of equivalent

inequalities to x2+xy+y2

x+y ≤ 3
2

√
x2+y2

2 , proceeding from which we apply Jensen’s

inequality: ∑
cycl

√
x2 + y2

2
≤

√√√√3
∑
cycl

x2 + y2

2
= 6.

�
Acknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly posted the above problem of his from the Romanian
Mathematical Magazine at the CutTheKnotMath facebook page and later
emailed me his solution (Solution 1) of the problem in a LaTex file. Solution 2 is
by Leo Giugiuc.

162. An Inequality for Sides and Area

Prove that in any ∆ABC∑∑∑
cycl

(a2 − ab+ b2)2

a2 + 4ab+ b2
≥

2S
√

3

Proposed by Daniel Sitaru

Solution (by Daniel Sitaru).
We shall prove that for positive x, y,

(x2 − xy + y2)2

x2 + 4xy + y2
≥ 1

12
(x2 + y2).

To this end, introduce s = x + y and p = xy. Obviously, s
2 ≥

√
p, implying

s2

p ≥ 4.

We have a sequence of equivalent inequalities:

(x2 − xy + y2)2

x2 + 4xy + y2
≥ 1

12
(x2 + y2)
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(s2 − 3p)2

s2 + 2p
≥ 1

12
(s2 − 2p)

12(s2 − 3p)2 ≥ s4 − 4p2

12s4 − 72s2p+ 108p2 ≥ s4 − 4p2

11s4 − 72s2p+ 112p2 ≥ 0.

Define t = s2

p and note that t ≥ 4. The last inequality reduces to

11t2 − 72t + 112 ≥ 0 which is the same as (t − 4)(11t − 28) ≥ 0, which is true
since t ≥ 4. Returning to the original inequality,∑

cycl

(a2 − ab+ b2)2

a2 + 4ab+ b2
≥ 1

12

∑
cycl

a2 + b2

=
1

6
(a2 + b2 + c2) ≥ 1

6
4
√

3S =
2S√

3
,

by Weitzenböck’s inequality . Equality is attained only for equilateral trian-
gles. �

Acknowledgment (by Alexander Bogomolny)
The problem (from the Romanian Mathematical Magazine) has been kindly
posted by Daniel Sitaru at the CutTheKnotMath facebook page , Daniel later
emailed me his solution in a LaTex file.

163. Dan Sitaru’s Amazing, Never Ending Inequality

Assume a, b, c > 0. Prove that∑∑∑
cycl

(a
b

)2
·
∑∑∑
cycl

(a
b

)4
·
∑∑∑
cycl

(a
b

)8
≥
∑∑∑
cycl

(a
c

)
·
∑∑∑
cycl

( b
a

)
·
∑∑∑
cycl

(b
c

)
Proposed by Daniel Sitaru

Solution (by Daniel Sitaru).
Below, we shall be using repeatedly the inequality

x2 + y2 + z2 ≥ xy + yz + zx

For example, with x = a
b , y = b

c , z = c
a , we get∑

cycl

(a
b

)2

≥
∑
cycl

(a
b
· b
c

)
=
∑
cycl

(a
c

)
Similarly,∑

cycl

(a
b

)4

≥
∑
cycl

(a
b
· b
c

)2

=
∑
cycl

(a
c

)2

≥
∑
cycl

(a
c
· b
a

)
=
∑
cycl

(b
c

)
,

∑
cycl

(a
b

)8

≥
∑
cycl

(a
b
· b
c

)4

=
∑
cycl

(a
c

)4

≥
∑
cycl

(a
c
· b
a

)2

=
∑
cycl

(b
c

)2

≥
∑
cycl

(b
c
· c
a

)
=
∑
cycl

( c
a

)
.

We now only need to multiply the three inequalities. �
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Extra (by Alexander Bogomolny)
The problem admits multiple variations. For example, from∑

cycl

(a
b

)4

≥
∑
cycl

(a
b
· b
c

)2

=
∑
cycl

(a
c

)2

≥
∑
cycl

(a
c
· c
b

)
=
∑
cycl

(a
b

)
,

we get that, for k ≥ 2,
∑
cycl

(
a
b

)2k

≥
∑
cycl

(
a
b

)
and thus

n∏
k=2

[∑
cycl

(a
b

)2k
]
≥

[∑
cycl

(a
b

)]n−1

.

By the same token, the original inequality could have been written as∑
cycl

(a
b

)2

·
∑
cycl

(a
b

)4

·
∑
cycl

(a
b

)8

≥
∑
cycl

(a
c

)
·
∑
cycl

(c
b

)
·
∑
cycl

( b
a

)
or as ∑

cycl

(a
b

)2

·
∑
cycl

(a
b

)4

·
∑
cycl

(a
b

)8

≥

[∑
cycl

(a
c

)]3

and in general
n∏
k=1

[∑
cycl

(a
b

)2k
]
≥

[∑
cycl

(a
c

)]n
.

Acknowledgment (by Alexander Bogomolny)
Daniel Sitaru has kindly posted the above problem of his from the Romanian
Mathematical Magazine at the CutTheKnotMath facebook page and later
emailed me his solution of this amazing prolem in a LaTex file.

164. A Cyclic Inequality in Triangle for Integer Powers

a, b, c are the side lengths of ∆ABC;n ≥ 0, an integer. Prove that∑∑∑
cycl

an+1

b+ c− a
≥
∑∑∑
cycl

an.

Proposed by Daniel Sitaru

Solution(by Daniel Sitaru).∑
cycl

an+1

b+ c− a
−
∑
cycl

an =
∑
cycl

( an+1

b+ c− a
− an

)
=
∑
cycl

an+1 − anb− anc+ an+1

b+ c− a
=
∑
cycl

an(a− b) + an(a− c)
b+ c− a

=
∑
cycl

an(a− b)
b+ c− a

+
∑
cycl

an(a− c)b+ c− a
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=
∑
cycl

an(a− b)
b+ c− a

+
∑
cycl

bn(b− a)c+ a− b

=
∑
cycl

(a− b)
(an(c+ a− b)− bn(b+ c− a)

(b+ c− a)(c+ a− b)

)

=
∑
cycl

(a− b)
(anc+ an+1 − anb− bn+1 − bnc+ abn

(b+ c− a)(c+ a− b)

)

=
∑
cycl

(a− b)
(a(an + bn)− b(an + bn) + c(an + bn)

(b+ c− a)(c+ a− b)

)

=
∑
cycl

(a− b)
( (a− b)(an + bn) + c(an − bn)

(b+ c− a)(c+ a− b)

)
.

We now consider two cases:

n ≥ 0∑
cycl

(a− b)
( (a− b)(an + bn) + c(an − bn)

(b+ c− a)(c+ a− b)

)

=
∑
cycl

(a− b)2
( (an + bn) +

∑n−1
k=0 a

n−1−kbk

(b+ c− a)(c+ a− b)

)
≥ 0.

∑
cycl

(a− b)
( (a− b)(an + bn) + c(an − bn)

(b+ c− a)(c+ a− b)

)

=
∑
cycl

(a− b)
( (a− b) · 2

(b+ c− a)(c+ a− b)

)

=
∑
cycl

(a− b)2
( 2

(b+ c− a)(c+ a− b)

)
≥ 0.

�
Acknowledgment (by Alexander Bogomolny)

The problem (from the Romanian Mathematical Magazine) has been kindly
posted by Daniel Sitaru at the CutTheKnotMath facebook page , Daniel later
emailed me his solution in a LaTeX file.

165. An Inequality with Cyclic Sums on Both Sides II

Let a, b, c > 0. Then:∑∑∑
cycl

6
√
ab2c3 ≥

∑∑∑
cycl

30
√
a9b10c11.

Proposed by Daniel Sitaru
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Solution 1(same solution by Kevin Soto Palacios and Ravi Prakash).
Introduce new variables, with x90 = ab2c3, y90 = bc2a3, z90 = ca2b3, and
x, y, z > 0. We have (xyz)90 = (abc)6, i.e., (xyz)15 = abc and
(xyz)120 = (abc)8. The required inequality is equivalent to

x15 + y15 + z15 ≥ (x3 + y3 + z3)(xyz)4

By the AM-GM inequality ,

7x15 + 4y15 + 4z15 ≥ 15 15
√

(x15)7(y15)4(z15)4 = 15x7y4z4

7y15 + 4z15 + 4x15 ≥ 15 15
√

(y15)7(z15)4(x15)4 = 15y7z4x4

7z15 + 4x15 + 4y15 ≥ 15 15
√

(z15)7(x15)4(y15)4 = 15z7x4y4

Adding up gives

15(x15 + y15 + z15) ≥ 15(x3 + y3 + z3)(xyz)4 ⇔

x15 + y15 + z15 ≥ (x3 + y3 + z3)(xyz)4.

�
Solution 2(by Mohamed Jamal).

Since the inequality is homogeneous, we may assume abc = 1. Then the inequal-
ity becomes ∑

cycl

6

√
a

b
≥ 30

√
a

b
.

By the AM-GM inequality,

2 6

√
a

b
+

6

√
b

c
+ 6

√
c

a
+ 1 ≥ 5 · 30

√
a

b

2
6

√
b

c
+ 6

√
c

a
+ 6

√
a

b
+ 1 ≥ 5 · 30

√
c

a

2 6

√
c

a
+ 6

√
a

b
+

6

√
b

c
+ 1 ≥ 5 · 30

√
c

a

Adding up gives

4
∑
cycl

6

√
a

b
+ 3 ≥ 5

∑
cycl

30

√
a

b

Thus, suffice it to prove that

1

4

(
5
∑
cycl

30

√
a

b
− 3

)
≥
∑
cycl

30

√
a

b

i.e.,
∑
cycl

30
√

a
b ≥ 3, which is obvious. �

Solution 3(by Nguyen Ngoc Tu).

Take (x, y, z) = ( 30
√
a, 30
√
b, 30
√
c).x, y, z > 0. We have to prove

(xyz)5(x5y10 + y5z10 + z5x10) ≥ x9y10z11 + y9z10x11 + z9x10y11,

or, equivalently,

x5y10 + y5z10 + z5x10 ≥ (xyz)(xy2 + yz2 + zx2)
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Assume xyz = 1. We have to prove that
∑
cycl(xy

2)5 ≥
∑
cycl xy

2, which is∑
cycl

X5 ≥
∑
cycl

X, with (X,Y, Z) = (xy2, yz2, zx2), X, Y, Z > 0 and XY Z = 1.

We have
(X5 + Y 5 + Z5)(X + Y + Z) ≥ (X3 + Y 3 + Z3)2 ⇒

X5 + Y 5 + Z5 ≥ (X3 + Y 3 + Z3)2

X + Y + Z

(X3 + Y 3 + Z3)(X + Y + Z) ≥ (X2 + Y 2 + Z2)2

≥ (X + Y + Z)4

9
⇒

X3 + Y 3 + Z3 ≥ (X + Y + Z)3

9
⇒

X5 + Y 5 + Z5 ≥ (X3 + Y 3 + Z3)2

X + Y + Z

≥ (X + Y + Z)5

81
≥ X + Y + Z.

�
Solution 4(by Sanong Hauerai).

Set x = a5b10c15, y = b5c10a15, z = c5a10b15. Then

2 30
√
x+ 2 30

√
y + 30

√
z ≥ 5 5

√
30
√
xxyyz = 5

30
√
a10b9c11

2 30
√
y + 2 30

√
z + 30

√
x ≥ 5

30
√
b10c9a11

2 30
√
z + 2 30

√
x+ 30

√
y ≥ 5

30
√
c10a9b11

It follows that ∑
cycl

6
√
ab2c3 ≥

∑
cycl

30
√
a9b10c11.

�
Solution 5 (by Nassim Nicholas Taleb).

We can rewrite the inequality as
∑
cycl

30
√
a5b10c15 ≥

∑
cycl

30
√
a9b10c11 and

then use convexity arguments.
In general, for q > p1 > p2 > 0 and n > 0,∑

cycl

n
√
aq−p1bqcq+p1 ≥

∑
cycl

n
√
aq−p2bqcq+p2 ≥ 3a

q
n b

q
n c

q
n .

�
Acknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly posted a problem of his from the Romanian Mathemat-
ical Magazine at the CutTheKnotMath facebook page . Solution 1 is by Kevin
Soto Palacios (Peru) and, independently, by Ravi Prakash (India); Solution 2 is by
Mohamed Jamal (Morocco); Solution 3 is by Nguyen Ngoc Tu (Vietnam); Solution
4 is by Sanong Hauerai (Thailand), Solution 5 is by N.N. Taleb (USA/Lebanon).
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166. Another Inequality with Logarithms, But Not Really

Prove that if x, y, z ∈ (0,1) or x, y, z ∈ (1,∞) then:∑∑∑
cycl

log3
y x+ log3

z y

log2
y x+ logz x+ log2

z y
≥ 2.

Proposed by Daniel Sitaru

Solution (by Daniel Sitaru).
Let a = logy x; b = logz y; c = logx z. Since logz x = logz y · logy x = ab, the
inequality reduces to ∑ a3 + b3

a2 + ab+ b2
≥ 2,

with abc = 1.
To continue,

a3 + b3

a2 + ab+ b2
=

(a+ b)(a2 − ab+ b2)

a2 + ab+ b2

≥ a+ b

3

because a2−ab+b2
a2+ab+b2 ≥

1
3 , which is equivalent to 2(a− b)2 ≥ 0.

Thus using the AM-GM inequality ,∑ a3 + b2

a2 + ab+ b2
≥
∑ a+ b

3
=

2

3
(a+ b+ c)

AM−GM︷︸︸︷
≥ 2

3
· 3 3
√
abc = 2.

�
Acknowledgment (by Alexander Bogomolny)
Daniel Sitaru has kindly reposted the above problem of his from the Romanian
Mathematical Magazine at the CutTheKnotMath facebook page and later
emailed me his solution in a LaTex file.

167. An Inequality in Fractions with Absolute Values

Assume a, b, c ∈ R, a 6= b 6= c 6= a. Define

ω = min{|a+ b|, |b+ c|, |c+ a|} and

Ω = max{|a|, |b|, |c|}. Prove that

ω <
1

3

(∑∑∑
cycl

a|a| − b|b|
a− b

)
< 2Ω.

Proposed by Daniel Sitaru

Solution (same solution by Soumava Chakraborty and Ravi Prakash).

Note that the function f(x, y) =
x|x| − y|y|
x− y

satisfy f(x, y) = f(−x,−y) and so too

f(−x,−y) + f(−y,−z) + f(−z,−x) = f(x, y) + f(y, z) + f(z, x).
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If so, suffice it to consider only two cases: 1) a, b, c ≥ 0 and 2) a, b ≥ 0 and c ≤ 0.
In the first case, we can simply remove the absolute values throughout to obtain

min{(a+ b), (b+ c), (c+ a)} < 1

3

∑
cycl

a2 − b2

a− b

=
1

3

∑
cycl

(a+ b) < 2 max{a, b, c}.

In the second case, let |c| = −c. Then

f(a, b) + f(b, c) + f(c, a) =
a|a| − b|b|
a− b

+
b|b| − c|c|
b− c

+
c|c| − a|a|
c− a

= (a+ b) +
b2 + |c|2

b+ |c|
+
|c|2 + a2

|c|+ a

< (a+ b) + (b+ |c|) + (|c|+ a) < 6 max{|a|, |b|, |c|}.
On the other hand, for x, y ≥ 0, x2 + y2 ≥ |x2 − y2| = |x − y| · (x + y), with
equality only when of x, y is zero. Thus, it follows that
b2+c2

b+|c| ≥ |b− |c|| = |b+ c| and, similarly, |c|
2+a2

|c|+a ≥ |a− |c|| = |c+ a|. Adding up

gives

a|a| − b|b|
a− b

+
b|b| − c|c|
b− c

+
c|c| − a|a|
c− a

≥ (a+ b) + |b+ c|+ |c+ a|

> 3 min{|a+ b|, |b+ c|, |c+ a|}
No two of a, b, c may vanish simultaneously. �

Acknowledgment (by Alexander Bogomolny)
This problem from his book “Algebraic Phenomenon” has been kindly posted at
the CutTheKnotMath facebook page by Daniel Sitaru.

Soumava Chakraborty gave a proof of |x+ y| ≤ x|x|−y|y|
x−y ≤ |x|+ |y| by considering

four cases and a similar proof has been submitted by Ravi Prakash.

168. A Cyclic Inequality of Degree Four

Prove that if a, b, c > 0, then:

a4b+ b4c+ c4a+ 2(a+ b+ c) ≥
√

3(ab+ bc+ ca)

Proposed by Daniel Sitaru

Solution (by Daniel Sitaru).
Observe that the inequality is equivalent to∑

cycl

b(a4 − a
√

3 + 2) ≥ 0.

But

a4 − a
√

3 + 2(a2 − 1)2 + 2a2 − a
√

3 + 1

= (a2 − 1)2 +

(
√

2a−
√

3

8

)8

+
5

8
> 0.

�
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Extension (by Alexander Bogomolny)
Note that the original inequality is weak, for example,

a2 − a
√

5 + 2 = (a2 − 1)2 + 2a2 − a
√

5 + 1

= (a2 − 1)2 +

(
√

2a− 5

8

)2

+
3

8

> 0

Show that
∑
cycl +2

∑
cycl a ≥

√
5
∑
cycl ab is also true which organically

leads to the question of finding the maximum k such that

a2b+ b4c+ c4a+ 2(a+ b+ c) ≥ k(ab+ bc+ ca)

Simply following the derivation above, the maximal k satisfies, k ≥ k0 = 2
√

2.
But we can do better.

Let f(x) = x4 − xk + 2. Then f ′(x) = 4x3 − k = 0 leads to x = 3

√
k
4 . It is easy to

see that this is a local minimum because f ′′
(

3

√
k
5

)
≥ 0.

Now, f
(

3

√
k
4

)4

=
(

3

√
k
4

)4

− k 3

√
k
4 + 2 = 2− 3

(
3

√
k
4

)4

. From this, k1 = 4
(

2
3

) 3
4

Now, this is an improvement since k1
k0
≈ 1.0434.

The graph (courtesy wolframalpha) shows that this may not be the last word:
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However, the graph generated by GeoGebra tells us a different story:

Acknowledgment (by Alexander Bogomolny)
Daniel Sitaru has kindly posted the above problem of his from the Romanian
Mathematical Magazine at the CutTheKnotMath facebook page and Leo
Giugiuc messaged his solution practically right away.
Jeffrey Samuelson gave an answer to the extended question.

169. A Problem with a Magical Solution from Secrets in
Inequality

Let x, y, zbe positive real numbers satisfying

2xyz = 3x2 + 4y2 + 5z2.

Find the minimum of the expression

P = 3x+ 2y+ z

Proposed by Pham Kim Hung

Solution by author.
Let a = 3x, b = 2y, c = z. Then P = 3x+ 2y + z = a+ b+ c and

a2 + 3b2 + 15c2 = abc.

We’ll make a double application of the weighted AM-GM inequality:∑
wkxk∑
wk

≥
∑
wk

√∏
xwkk .

First, with w1 = 1
2 , w2 = 1

3 , w3 = 1
6 (w1 + w2 + w3 = 1!),

(1) a+ b+ c ≥ (2a)
1
2 (3b)

1
3 (6c)

1
6 .

Then, with w1 = 1
4 , w2 = 3

9 = 1
3 , w3 = 15

36 = 5
12 (w1 + w2 + w3 = 1!),

(2) a2 + 3b2 + 15c2 ≥ (4a2)
1
4 (9b2)

3
9 (36c2)

15
36

= (4a2)
1
4 (9b2)

1
3 (36c2)

5
12 .

Multiplying (1) and (2),

(a+ b+ c)(a2 + 3b2 + 15c2) ≥ 36abc,

which implies a + b + c ≥ 36, the quantity that is attained for x = y = z = 6,
making it the sought minimum. �
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Aknowledgment (by Alexander Bogomolny)
This problem #81 from Phan Kim Hung’s Secrets in Inequalities, (GIL Publishing
House, 2007). I am grateful to Dan Sitaru who mailed me the problem and helped
understand its solution.

170. An Equation in Factorials

Solve in natural numbers the following equation

12 · 2! + 22 · 3! + . . .+ n2(n+ 1)!− 2

(n+ 1)!
= 108.

Proposed by Daniel Sitaru

Solution 1 (by Daniel Sitaru).
We’ll use the induction in n to prove

12 · 2! + 22 · 3! + . . .+ n2(n+ 1)!− 2 = (n+ 2)!(n− 1).

The claim-holds for n = 1 : 12(1 + 1)!− 2 = (1 + 1)(1 + 2)(1− 1).
Assume P (k) =: 12 · 2! + 22 · 3! + . . . + k2(k + 1)! − 2 = (k + 2)!(k − 1) is true,
and let’s prove P (k + 1), i.e.,

12 · 2! + 22 · 3! + . . .+ k2(k + 1)! + (k + 1)2(k + 2)!− 2 = (k + 3)!k.

We have
12 · 2! + 22 · 3! + . . .+ k2(k + 1)! + (k + 1)2(k + 2)!− 2

= (k + 2)!(k − 1) + (k + 1)2(k + 2)!

= (k + 2)![(k − 1) + (k + 1)2] = (k + 2)![k2 + 3k] = (k + 3)!k.

as required. Thus we rewrite the original equation:

(n+ 2)!(n− 1)

(n+ 1)!
= 108,

or, n2 + n − 110 = 0, giving two roots, n = 10 that solves the problem and a
superfluous one n = −11. �

Solution 2 (by Kunihiko Chikaya).
We’ll unfold the telescoping sum:

n∑
k=1

k2(k + 1)! =
n∑
k=1

[(k + 2)2 − 4(k + 1)](k + 1)!

=

n∑
k=1

[(k + 2)(k + 2)!− 4(k + 1)(k + 1)!]

=

n∑
k=1

[(k + 3− 1)(k + 2)!− 4(k + 2− 1)(k + 1)!]

=

n∑
k=1

[(k + 3)!− (k + 2)!− 4(k + 2)! + 4(k + 1)!]

=

n∑
k=1

[(k + 3)!− 5(k + 2)! + 4(k + 1)!]

=

n+3∑
k=4

k!− 5

n+2∑
k=3

k! + 4

n+1∑
k=2

k!
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= (n+ 3)!− 4(n+ 2)! + 2 = (n+ 2)!(n− 1) + 2.

Thus the equation reduces to (n+ 2)(n− 1) = 108 from which n = 10. �
Solution 3 (by Amit Itagi).

Let

Sk =
122! + 223! + . . .+ k2(k + 1)!− 2

(k + 1)!
.

We can rule out n = 1, 2 as solution by observation. Thus, we are guaranteed
to have an S2 and an S3 and verify that both are integers. In general, for some
k ≥ 3,

(k + 1)!Sk − k!Sk−1 = k2(k + 1)!

⇒ (k + 1)Sk − Sk1 = k2(k + 1)

By observing this equation, we claim that Skis a quadratic polynomial in k. Let
Sk = ak2 + bk+ c. Pugging this expression back into the recurrence relation and
evaluating the undetermined coefficients,

(k + 1)(ak2 + bk + c)− [a(k − 1)2 + b(k − 1) + c] = k3 + k2

ak3 + bk2 + (2a+ c)k + (b− a) = k3 + k2

Thus, a = 1, b = 1, c = −2 and Sk = k2 + k − 2.
So, the equation becomes Sn = n2 +n− 2 = 108. The two roots are n = 10 and
n = −11. Thus, the only permissible solution in natural numbers is n = 10. �

Solution 4(by Nassim Nicolas Taleb).

Writing in Gamma functions, the LHS is (n) =
−2+

∑n
k=1 k

2Γ(k+2)

Γ(n+1) . We have

n∑
k=1

k2Γ(k + 2) = nΓ(n+ 3)− Γ(n+ 3) + 2,

and conclude

F (n) =
Γ(n+ 3)

Γ(n+ 2)
(n− 1) = (2 + n)(n− 1).

Solving (2 + n)(n− 1) = 108, we get n = 10. �
Ackowledgment(by Alexander Bogomolny)

Daniel Sitaru has kindly posted at CutTheKnotMath facebook page a problem
of his from the Romanian Mathematical Magazine and later sent me a LaTex
file with his solution (Solution 1). Solution 2 is by Kunihiko Chikaya; Solution 3 is
by Amit Itagi; Solution 4 is by N. N. Taleb.

171. An Inequality with Powers And Logarithm

Prove, for a ≥ b > 0, the following inequality

a

b
+
a2

b2
+
a3

b3
+ 12 ln b ≥

b

a
+
b2

a2
+
b3

a3
+ 12 lna

Proposed by Daniel Sitaru

Solution (by Daniel Sitaru).
Consider function f : [1,∞)→ R; f(x) = x− 1

x − 2 lnx.

f ′(x) = 1 +
1

x2
− 2

x
=
x2 − 2x+ 1

x2
=

(x− 1)2

x2
≥ 0.
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It follows that the function is increasing: f(x) ≥ f(1) = 0, for x ≥ 1. In other
words x− 1

x ≥ 2 lnx.

We’ll use this result with x = a
b ,

a2

b2 ,
a3

b3 to obtain

a

b
− b

a
≥ 2 ln

(a
b

)
a2

b2
− b2

a2
≥ 2 ln

(a
b

)2

= 4 ln
(a
b

)
a3

b3
− b3

a3
≥ 2 ln

(a
b

)3

= 6 ln
(a
b

)
Adding up and rearranging we get

a

b
+
a2

b2
+
a3

b3
≥ b

a
+
b2

a2
+
b3

a3
+ 12 ln

(a
b

)
,

or,

a

b
+
a2

b2
+
a3

b3
+ 12 ln b ≥ b

a
+
b2

a2
+
b3

a3
+ 12 ln a.

�
Extra (by Alexander Bogomolny)
I originally misread the problem as

Prove, for a, b > 0, the following inequality

a

b
+
a2

b2
+
a3

b3
+ 12 ln b ≥ b

a
+
b2

a2
+
b3

a3
+ 12 ln a.

Find a simple argument to show that, as stated, it could not be true.
Aknowledgment( by Alexander Bogomolny)
Daniel Sitaru has kindly posted at CutTheKnotMath facebook page a problem
of his from the Romanian Mathematical Magazine and later sent me a LaTeX
file with his solution.
Concerning Extra (by Alexandewr Bogomolny)
If the left-hand side is denoted f(a, b), the right-hand side becomes f(b, a) and the
misread problem suggests that f(a, b) ≥ f(b, a), for a, b > 0. The problem allows
one to swap variables and claim f(b, a) ≥ f(a, b) which, in combination, leads to
f(a, b) = f(b, a) and this is patently not true.

172. A Cyclic Inequality in Three Variables XXV

Prove that, for a, b, c ≥ 0,∑∑∑
cycl

(a−
√
ab+ b)2 ·

∑∑∑
cycl

(a2 − ab+ b2)2 ≥ 9a2b2c2

Proposed by Daniel Sitaru

Solution 1 (same solution by Kevin Soto Palacios and Seyran Ibrahimov).

By the AM-GM inequality , a −
√
ab + b ≥

√
ab and a2 − ab + b2 ≥ ab.

It thus follows that∑
cycl

(a−
√
ab+ b)2 ·

∑
cycl

(a2 − ab+ b2)2 ≥
∑
cycl

ab ·
∑
cycl

a2b2.
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Again, with the AM-GM inequality,
∑
cycl ab ≥ 3

3
√
a2b2c2 and∑

cycl a
2b2 ≥ 3

3
√
a4b4c4 so that∑
cycl

ab ·
∑
cycl

a2b2 ≥ 9
3
√
a2b2c2 · 3

√
a4b4c4 = 9a2b2c2.

�
Solution 2 (same solution by Sanong Hauerai and Abdur Rahman).

With Bergström’s inequality ,∑
cycl

(a−
√
ab+ b)2 ≥

(2
∑
cycl a−

√
ab)2

3

≥
(
∑
cycl a)2

3

≥
3(
∑
cycl ab)

3
≥
∑
cycl

ab

and, similarly,
∑
cycl(a

2 − ab+ b2)2 ≥
∑
cycl a

2b2. Further,∑
cycl

ab ·
∑
cycl

a2b2 ≥ 3
∑
cycl

a3b2c ≥ 9
3
√
a6b6c6 = 9a2b2c2.

�
Acknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly posted the problem of his from the Romanian Math-
ematical Magazine at the CutTheKnotMath facebook page and later com-
municated the above proof in a LaTex file. Solution 1 is by Kevin Soto Palacios
and, independently, by Seyran Ibrahimov; Solution 2 is by Sanong Hauerai and a
similar solution by has been posted by Abdur Rahman.

173. An Identity in Triangle with a 135 Degrees Angle

Prove that in ∆ABC
s+ r

R+ r
≥
√

2⇔max{A,B,C} = 135◦

where s,R, rare the semiperimeter, the circumradius, the inradius of ∆ABC,

respectively.

Proposed by Mehmet Şahin

Solution (by Daniel Sitaru).

WLOG, assume A = 135◦ so that, by the Law of Sines, R = a
a sinA = a

√
2

2 ;

[∆ABC] = 1
2 sin 135◦; and, by the Law of Cosines,

a2 + b2 + c2 +
√

2bc.
Now we have a sequence of equivalent identities:

s+ r

R+ r
⇔
√

2R+ r(
√

2− 1)r

⇔ s = a+ r(
√

2− 1)r

⇔ a+ b+ c = 2a+ 2r(
√

2− 1)⇔ b+ c− a = (
√

2− 1)

√
2bc

2s
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⇔ (a+ b+ c)(b+ c− a) = (2−
√

2)bc

⇔ (b+ c)2 − a2 = (2−
√

2)bc⇔ (b+ c)2 − b2 − c2 −
√

2bc = (2−
√

2)bc

⇔ (2−
√

2)bc = (2−
√

2)bc⇔ bc⇔ 0 = 0.

�
Acknowledgment (by Alexander Bogomolny)

The problem by Mehmet Sahin has been kindly posted by Daniel Sitaru at the
CutTheKnotMath facebook page , along with a solution of his.

174. Dan Sitaru’s Cyclic Inequality In Three Variables with
Constraints III

Let x, y, z > 0 and
√
xy+

√
yz+

√
zx = 2 then:

12 +
∑∑∑
cycl

(√
x3

y
+

√
x3

y

)
≥ 8(x+ y+ z).

Proposed by Daniel Sitaru

Solution 1(by Ravi Prakash).
Let x = a2, b = y2, c = z2, where a, b, c > 0. Then ab + bc + ca = 2. Now
consider,

a3

b3
+
b3

a
+ 6ab− 4a2 − 4b2

=
1

2ab
(a2 − 4a3b+ 6a2b2 − 4ab3 + b4)

=
1

ab
(a− b)4 ≥ 0.

By deriving two similar inequalities and summing up we get

6
∑
cycl

ab+
∑
cycl

(a3

b
+
b3

a

)
≥ 8

∑
cycl

a2

which is, after a face lift, the required inequality. �
Solution 2(by Kevin Soto Palacios).

6
∑
cycl

√
xy +

∑
cycl

(√
x3

y
+

√
x3

y

)
≥ 4

∑
cycl

(x+ y).

Suffice it to prove that
√

x3

y +
√

x3

y + 6
√
xy ≥ 4(x+ y) which is equivalent to

x2 + y2 + 6xy ≥ 4
√
xy(x + y), i.e. (

√
x − √y)4 ≥ 0. Summing up yields the

required inequality. Equality is achieved for

x = y = z =
2

3
�

Acknowledgment (by Alexander Bogomolny)
Daniel Sitaru has kindly posted a problem of his from the Romanian Mathe-
matical Magazine at the CutTheKnotMath facebook page . Solution 1 is by
Ravi Prakash (India); Solution 2 is by Kevin Soto Palacios (Peru). Hoang Tung,
Aziz, Sanong Hauerai have independently arrived at variants of those.
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175. An Inequality with Angles and Integers

Prove that for integers k and l, and for any α,β ∈
(
0,
π

2

)
the following

inequality holds:

k2 tanα+ l2 tanβ ≥ 2kl

sin(α+ β)− (k2 + l2) cot(α+ β)

Proposed by Daniel Sitaru

Solution 1(by Daniel Sitaru).
By the AM-GM inequality ,

k2 cos2 β + l2 cos2 α ≥ 2
√
k2l2 cos2 α cos2 β

= 2|kl| cosα cosβ ≥ 2kl cosα cosβ.

Thus, we have a sequence of equivalent inequalities:

k2 cos2 β + l2 cos2 α− 2kl cosα cosβ ≥ 0

k2 cos2 β

sin(α+ β) cosα cosβ
+

l2 cos2 α

sin(α+ β) cosα cosβ
− 2kl cosα cosβ

sin(α+ β) cosα cosβ
≥ 0

k2 cosβ

sin(α+ β) cosα
+

l2 cosα

sin(α+ β) cosβ
− 2kl

sin(α+ β)
≥ 0

k2 cos(α+ β − α)

sin(α+ β) cosα
+
l2 cos(α+ β − β)

sin(α+ β) cosβ
− 2kl

sin(α+ β)
≥ 0

k2
( sinα

cosα
+

cos(α+ β)

sin(α+ β)

)
+ l2

( sinβ

cosβ
+

cos(α+ β)

sin(α+ β)
− 2kl

sin(α+ β)

)
≥ 0

k2(tanα+ cot(α+ β)) + l2(tanβ + cot(α+ β)) ≥ 2kl

sin(α+ β)

k2 tanα+ l2 tanβ ≥ 2kl

sin(α+ β)
− (k2 + l2) cot(α+ β)

�
Solution 2 (by Amit Itagi).

k2 tanα+ l2 tanβ ≥ 2kl

sin(α+ β)
− (k2 + l2) cot(α+ β)⇔(

k2 sinα

cosβ
+ l2

sinβ

cosβ

)
sin(α+ β) + (k2 + l2) cos(α+ β) ≥ 2kl⇔(

k2 sinα

cosα
+ l2

sinβ

cosβ

)
(sinα cosβ + cosα sinβ)

+(k2 + l2)(cosα cosβ − sinα sinβ) ≥ 2kl⇔

k2
( sin2 α cosβ

cosα
+ cosα cosβ

)
+ l2

( sin2 β cosα

cosβ
+ cosα cosβ

)
≥ 2kl⇔(

k2 cosβ

cosα

)
(sin2 α+ cos2 α)+

(
l2

cosα

cosβ

)
(sin2 β + cos2 β) ≥ 2kl⇔

k2 cosβ

cosα
+ l2

cosα

cosβ
≥ 2kl.

Note that cosα, cosβ and sin(α+β) are positive over the domain defined in the
problem. Thus, the last inequality follows from AM-GM and the first inequality
can be derived from the last inequality be reversing all the steps. �



34

Acknowledgment (by Alexander Bogomolny)
Daniel Sitaru has kindly emailed me a LaTeX file with his solution (Solution 1)
to the above problem, originally from the School Science and Mathematics
Association . The problem is by ARKADY ALT, SAN JOSE, CA. Solution 2 is
by Amit Itagi.

176. An Inequality with Cyclic Sums on Both Sides III

Show that, for positive real numbers x, y and z,

x6z3 + y6x3 + z6y3

x2y2z2
≥
x3 + y3 + z3 + 3xyz

2

Proposed by Iuliana Traşcă

Solution (by Daniel Sitaru).
By the AM-GM inequality ,

x6z3 + x6z3 + y6x3 ≥ 3 3
√
x15z6y6 = 3x5y2z2.

Similarly,

y6x3 + y6x3 + z6y3 ≥ 3x2y5z2

z6y3 + z6y3 + x6z3 ≥ 3x2y2z5

By adding up,

3(x6z3 + y6x3 + z6y3) ≥ 3x2y2z2(x3 + y3 + z3),

i.e.,

x6z3 + y6z3 + z6y3 ≥ x2y2z2(x3 + y3 + z3)

Suffice it to prove that

x2y2z2(x3 + y3 + z3)

x2y2z2
≥ x3 + y3 + z3 + 3xyz

2
,

or, equivalently,

2(x3 + y3 + z3) ≥ x3 + y3 + z3 + 3xyz,

i.e.,

x3 + y3 + z3 ≥ 3xyz,

which is true by the AM-GM inequality: x3 + y3 + z3 ≥ 3 3
√
x3y3z3 = 3xyz. �

Acknowledgment (by Alexander Bogomolny)
Daniel Sitaru has kindly emailed me a LaTex file with his solution to the above
problem, originally from the School Science and Mathematics Association .
The problem is by Iuliana Traşcă, Scornicesti, Romania.

177. A Limit with Fractions, Roots, Powers and Series

Find the limit

Ω = lim
n→∞

3

√
(1 + 1

5√
2

+ 1
5√
3

+ · · ·+ 1
5√n

)2

5

√
(1 + 1

3√
2

+ 1
3√
3

+ · · ·+ 1
3√n

)4

Proposed by Daniel Sitaru
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Solution 1 (by Daniel Sitaru).
Applying the Stolz-Cesaro theorem,

lim
n→∞

1 + 1
3√2

+ 1
3√3

+ · · ·+ 1
3
√
n

n
2
3

= lim
n→∞

1
3
√
n+1

(n+ 1)
2
3 − n 2

3

= lim
n→∞

1

(n+ 1)
1
3 · n 2

3

[
(1 + 1

n )
2
3 − 1

] = lim
n→∞

1

(1 + 1
n )

1
3 · (1+ 1

n )
2
3−1

1
n

=
1
2
3

=
3

2

Similarly,

lim
n→∞

1 + 1
5√2

+ 1
5√3

+ · · ·+ 1
5
√
n

n
4
5

=
5

4
.

Thus

Ω = lim
n→∞

3

√
(1 + 1

5√2
+ 1

5√3
+ · · ·+ 1

5
√
n

)2

5

√
(1 + 1

3√2
+ 1

3√3
+ · · ·+ 1

3
√
n

)4

= lim
n→∞

(1 + 1
3√2

+ 1
3√3

+ · · ·+ 1
3
√
n

)−
4
5

(1 + 1
5√2

+ 1
5√3

+ · · ·+ 1
5
√
n

)−
2
3

= lim
n→∞

(
1 + 1

3√2
+ 1

3√3
+ · · ·+ 1

3
√
n

n
2
3

)− 4
5

·

(
n

5
4

1 + 1
5√2

+ 1
5√3

+ · · ·+ 1
5
√
n

)− 2
3

=
( 5

4 )−
2
3

( 3
2 )−

4
5

=
( 3

2 )
4
5

( 5
4 )

2
3

�
Solution 2 (by Amit Itagi).

For some k > 1, consider the series

Sn =
1

1 + 1

2
1
k

+ 1

3
1
k

+ · · ·+ 1

n
1
k

.

This series converges to 0 as n→∞. We claim this series approaches 0 with the
leading term as 1

nq for some q < 1. Thus, if we express Sn as

Sn =
Wn

nq
,

then the series Wn has a finite non-zero limit (say x) as n→∞. Thus,

1

Sn
− 1

Sn−1
=

1

n
1
k

nq

Wn
− (n− 1)q

Wn−1
=

1

n
1
k

In the limit as n→∞,

x = n
1
k [nq − (n− 1)q]

= n
q+1
k

[
1−
(

1− 1

n

)q]



36

∼ n
q+1
k
q

n

∼ qn
q+1
k−1

For this to be a constant, the leading power of n has to be 0. Thus, q = 1 − 1
k

and x = q.
Thus up to the leading term,

1

1 + 1

2
1
3

+ 1

3
1
3

+ · · ·+ 1

n
1
3

∼ 2

3n
2
3

1

1 + 1

2
1
5

+ 1

3
1
5

+ · · ·+ 1

n
1
5

∼ 4

5n
4
5

,

and the limit for the original problem is

L =
( 2

3 )
4
5

( 4
5 )

2
3

∼ 0.839.

�
Solution 3 (by Leonard Giugiuc).

We first prove the following lemma:

If α > −1, then

lim
n→∞

(1α + 2α + · · ·+ nα

nα+1

)
=

1

α+ 1

Indeed,

lim
n→∞

(1α + 2α + · · ·+ nα

nα+1

)
= lim
n→∞

(
1

n
·
n∑
k=1

(k
n

)α)

=

∫ 1

0

xαdx =
1

α+ 1
.

Now, with α = − 1
5 ,

lim
n→∞

1 + 2−
1
5 + · · ·+ n−

1
5

n
4
5

=
5

4

and with α = − 1
3 ,

lim
n→∞

1 + 2−
1
3 + · · ·+ n−

1
3

n
2
3

=
3

2

Interchanging the operations,

lim
n→∞

(∑n
k=1

1
5√
k

) 2
3

(∑n
k=1

1
3√
k

) 4
5

= lim
n→∞

([∑n
k=1

1
5√
k

]
n

4
5

) 2
3

([∑n
k=1

1
3√
k

]
n

2
3

) 4
5

=

(
3
2

) 4
5

(
5
4

) 2
3

.

�
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Solution 4 (by Nassim Nicolas Taleb).

a0 =

∫ K

0

1
5
√
u
du =

5

4
K

4
5

a1 =

∫ K

0

1
3
√
u
du =

3

2
K

2
3

Ω→ a
2
3
0

a
4
5
1

for N large, which is what we are looking for. So, as k comes out from

(
5K

4
5

4

) 2
3

(
3K

2
3

2

) 4
5

,

a
2
3
0

a
4
5
1

=
5

2
3

2
8
15 3

4
5

' 0.838945.

Added a Mathematica double check and intuition builder:

�
Acknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly emailed me a LaTeX file with the above problem and his
solution (Solution 1); the problem has been originally published at the Romanian
Mathematical Magazine . Solution 2 is by Amit Itagi; Solution 3 is by Leo
Giugiuc; Solution 4 is by N. N. Taleb.

178. Four Integrals in One Inequality

If f : [a, b]→ (0,∞), where 0 < a < b, is a continuos increasing function, then(∫∫∫ b

a

xf(x)dx

)(∫∫∫ b

a

f2(x)dx

)(∫∫∫ b

a

x3f(x)dx

)
≥
a2b2

b− a

(∫∫∫ b

a

f(x)dx

)4

Proposed by Daniel Sitaru
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Solution (by Leonard Giugiuc).
By Chebysev’s inequality (this is where we need function f(x) to be increasing)∫ b

a

xf(x)dx ≥ 1

b− a

(∫ b

a

xdx

)(∫ b

a

f(x)dx

)
=
a+ b

2

∫ b

a

f(x)dx.

Similarly, ∫ b

a

x3f(x)dx ≥ a3 + a2b+ ab2 + b3

4

∫ b

a

f(x)dx

By the Cauchy - Schwarz inequality ,∫ b

a

f2(x)dx ≥ 1

b− a

(∫ b

a

f(x)dx

)2

By the AM-GM inequality , a+b
2 ·

a3+a2b+ab2+b3

4 ≥ a2b2. Multiplying the three
inequality yields the required one. �

Acknowledgment (by Alexander Bogomolny)
Daniel Sitaru has kindly posted the problem of his from the Romanian Mathe-
matical Magazine at the CutTheKnotMath facebook page . Leonard Giugiuc
has commented with his solution.

179. A Cyclic Inequality in Three or More Variables

Prove that, for a, b, c > 0, subject to∑∑∑
cycl

1

a+ b
=

1

9
,

∑∑∑
cycl

a+ b

(a− b)2
+ 2 ·

∑∑∑
cycl

1

a
≥ 1.

Proposed by Daniel Sitaru

Solution 1 (by Leonard Giugiuc).
We start with proving a lemma:

Prove that, for a, b > 0,

a+ b

(a− b)2
+

1

a
+

1

b
≥ 9

a+ b

By cross-multiplying, the above inequality reduces to

a3 − 8a3b+ 18a2b2 − 8ab3 + b4 = (a2 − 4ab+ b2)2 ≥ 0.

Equality occurs for a = (2±
√

3)b.
The given inequality is an immediate consequence of the lemma:∑

cycl

a+ b

(a− b)2
+ 2 ·

∑
cycl

1

a
=
∑
cycl

[ a+ b

(a− b)2
+

1

a
+

1

b

]

≥
∑
cycl

9

a+ b
= 9 · 1

9
= 1.

�
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A little extra(by Alexander Bogomolny)
The appearance of the above inequality and the proof suggest a little more general
result:

Prove that, for an integer n ≥ 3 and n positive real numbers a, b, c, . . . , subject to∑
cycl

1

a+ b
=

1

9
,

∑
cycl

a+ b

(a− b)2
+ 2

∑
cycl

1

a
≥ 1.

It is interesting that by just looking at the constraint and the inequality, it is impos-
sible to ascertain the number of variables involved. The situation changes if we re-
place “cyclic” sums with “symmetric” sums: symmetric in the sense that every vari-
able is paired with any other exactly once. For n = 3 there is not difference, but for
n = 4, the cyclic pairing consists of the four pairs (a, b), (b, c), (c, d), (d, a), whereas
the symmetric pairing consists of six pairs: (a, b), (a, c), (a, d), (b, c), (b, d), (c, d). If
we write the inequality in the lemma for each of the six pairs and, subsequently,
add them all up, we’ll get∑

sym

a+ b

(a− b)2
+ 3
(1

a
+

1

b
+

1

c
+

1

d

)
≥ 1,

provided
∑
sym

1
a+b = 1

9 .
In general,

Prove that, for an integer n ≥ 3 and n positive real numbers a, b, c, . . . , subject to∑
sym

1

a+ b
=

1

9
,

∑
sym

a+ b

(a− b)2
+ (n− 1) ·

∑
cycl

1

a
≥ 1.

It should be noted that the above example, replacing, say, the pair (a, b) with the
pair (b, a) would not change any of the expressions we encountered above, which
allowed us to disregard half of the pairs. In general, a symmetric sum in four
variables of the expressions that depend on only two of them would include twelve
terms, for five variables, twenty.

Solution 2 (by Soumitra Mandal).
Using Bergström inequality,∑

cycl

a+ b

(a− b)2
+ 2

∑
cycl

1

a
=
∑
cycl

(a+ b)
( 1

(a− b)2
+

4

4ab

)

≥
∑
cycl

(a+ b) · (1 + 2)2

(a− b)2 + 4ab
= 9

∑
cycl

1

a+ b
= 1.

Acknowledgment(by Alexander Bogomolny)
Daniel Sitaru has kindly posted the problem of his from the Romanian Math-
ematical Magazine at the CutTheMath facebook page . The post has been
commented on by Leonard Giugiuc who supplied the lemma from which the
solution is immediate. Solution 2 is by Soumitra Mandal. �
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180. Same Integral, Three Intervals

Define

I(u, v) =

∫ v

u

(
arctan

( u sinx

v + u cosx

)
+ arctan

( v sinx

u+ v cosx

))
dx.

Let distinct real numbers a, b, c lie in
(
0,
π

2

)
Prove that∑∑∑

cycl

2

b− a
I(a, b) ≥

∑∑∑
cycl

(
√
ab+

√
a2 + b2

2

)
.

Proposed by Daniel Sitaru

Solution 1 (by Daniel Sitaru).

Let α = arctan
(

u sin x
v+u cos x

)
+ arctan

(
v sin x

u+v cos x

)
. Then

tanα =
u sin x

v+u cos x + b sin x
u+b cos x

1− uv sin2 x
(v+u cos x)(u+b cos x)

tanα =
u sinx(u+ v cosx) + v sinx(v + u cosx)

(v + u cosx)(u+ v cosx)− uv sin2 x

tanα =
(u2 + v2) sinx+ 2uv sinx cosx

uv + v2 cosx+ u2 cosx+ uv cos2 x− uv sin2 x

sinx(u2 + v2 + 2uv cosx)

cosx(u2 + v2) + uv(1 + cos 2x)
= tanα

sinx(u2 + v2 + 2uv cosx)

cosx(u2 + v2) + 2uv cos2 x
= tanα

sinx

cosx
= tanα⇒ tanα = tanx⇒ α = x

sinx

cosx
= tanα⇒ tanα = tanx⇒ α = x

I(u, v) =

∫ v

u

xdx =
x2

2

∣∣∣v
u

=
v2 − u2

2
.

Thus we have
2

b− a
I(a, b) +

2

c− b
I(b, c) +

2

a− c
I(a, c) = 2(a+ b+ c).

Suffice it to show that

2(a+ b+ c) ≥
∑(

√
ab+

√
a2 + b2

2

)
.

Let A =
√

u2+v2

2 ;B =
√
uv; 2A2 = u2 + v2;B2 = uv. Further

(u+ v)2 = u2 + v2 + 2uv = 2A2 + 2B2

u+ v ≥ A+B ⇔ (u+ v)2 ≥ (A+B)2

2A2 + 2B2 ≥ (A+B)2 ⇔ (A−B)2 ≥ 0.
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It follows that

a+ b ≥
√
ab+

√
a2 + b2

2

b+ c ≥
√
bc+

√
b2 + c2

2

c+ a ≥
√
ac+

√
a2 + c2

2

and, finally,

2(a+ b+ c) ≥
∑(

√
ab+

√
a2 + b2

2

)
.

�
Solution 2 (by Nassim Nicolas Taleb).

I(u, v) =

∫ v

u

arctan
( u sin(v)

u cos(v) + v

)
+ arctan

( v sin(v)

u+ v cos(v)

)
dx.

We have the following property:

arctan(a) + arctan(b) = arctan
( a+ b

1− ab

)
+ 10≤ab≤1π

(note the mistake in Abramowicz & Stigum, p 80)

tan(arctan(a) + arctan(b)) =
a+ b

1− ab
,

a, b ∈
[
0,
π

2

]
.

Allora

tan
(

arctan
( u sin(x)

u cos(x) + v

)
+ arctan

( v sin(x)

u+ v cos(x)

))
= tan(x)

Since all variables are in
(

0, π2

)
, I(u, v) = v2

2 −
u2

2 , the integrand becomes

mysteriously x, so

I(a, b) + I(c, a) + I(b, c) = 2(a+ b+ c)

We can prove that
√
a2 + b2√

2
+

√
a2 + c2√

2
+

√
b2 + c2√

2
+
√
ab+

√
ac+

√
bc− 2(a+ b+ c) ≤ 0

for a, b, c ∈
[
0,
π

2

]
, with equality for a = b = c = 1.

�
Sidebar (by Alexander Bogomolny)

In the process found a potential scary error in the literature. People seem to

have suspected it on @StackMath
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Riemann Surfaces, sort of. Below is the Abr. & Stig. Now used for 50 years! 4.4.34

arctan z1 ± arctan z2 = arctan
( z1 ± z2

1∓ z1z2

)
Acknowledgment (by Alexander Bogomolny)
This is a Daniel Sitaru’s problem form the Romanian Mathematical Magazine .
Daniel has kindly sent me the problem and his solution on a LaTeX file, as did N.
N. Taleb (Solution 2). I very much appreciate this kind of thoughtfulness.

181. Dan Sitaru’s Inequality with Three Related Integrals and
Derivatives

Let be a > 0;f : [0, a]→ R;f(a) = f ′(a) = 0, f is twice continuously

differentiable on [0, a], i.e., f ∈ C2[0, a]. Prove that(∫∫∫ a

0

f(x)dx

)4

≤
a8

60

(∫∫∫ a

0

(f ′(x))2dx

)(∫∫∫ a

0

(f ′′(x))2dx

)
.

Proposed by Daniel Sitaru

Solution( same solution by Daniel Sitaru and Amit Itagi).
We shall repeatedly use integration by parts.∫ a

0

f(x)dx =

∫ a

0

x′f(x)dx = xf(x)
∣∣∣a
0
−
∫ a

0

xf ′(x)dx

= −
∫ a

0

xf ′(x)dx(∫ a

0

f(x)dx

)2

=

(∫ a

0

xf ′(x)dx

)2

≤
∫ a

0

x2dx ·
∫ a

0

(f ′(x))2dx

=
x3

3

∣∣∣a
0
·
∫ a

0

(f ′(x))2dx =
a3

3

∫ 3

0

(f ′(x))2dx
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= 3

(∫ a

0

f(x)dx

)2

≤ a3

∫ a

0

(f ′(x))2dx∫ a

0

f(x)dx = −
∫ a

0

xf ′(x)dx = −
∫ a

0

(x2

2

)′
f ′(x)dx

= −

(
x2

2
f ′(x)

∣∣∣a
0
−
∫ a

0

x2

2
f ′′(x)dx

)
=

1

2

∫ a

0

x2f ′′(x)dx

≤

(
2

∫ a

0

f(x)dx

)2

=

(∫ a

0

x2f ′′(x)dx

)2

≤
∫ a

0

x4dx ·

(∫ a

0

(f ′′(x))2dx

)

=
x5

5

∣∣∣a
0

(∫ a

0

(f ′′(x))2dx

)
=
a5

5

(∫ a

0

(f ′′(x))2dx

)

4

(∫ a

0

f(x)dx

)2

≤ a5

5

(∫ a

0

(f ′′(x))2dx

)

3

(∫ a

0

f(x)dx

)2

≤ a3

(∫ a

0

(f ′(x))2dx

)

12

(∫ a

0

f(x)dx

)4

≤ a8

5

(∫ a

0

(f ′(x))2dx

)(∫ a

0

(f ′′(x))2dx

)
(∫ a

0

f(x)dx

)
≤ a8

60

(∫ a

0

(f ′(x))2dx

)(∫ a

0

(f ′′(x))2dx

)
�

Ackonwledgment (by Alexander Bogomolny)
This is a Daniel Sitaru’s problem from the Romanian Mathematical Magazine .
Daniel has kindly sent me the problem and his solution on a LaTeX file. I very
much appreciate this kind of thoughtfulness. Amit Itagi has independently come
up with the same solution.

182. Dan Sitaru’s Cyclic Inequality in Three Variables

Prove that if a, b, c > 0 then

(5a+ b)(5b+ c)(5c+ a)

27(a+ 8c)(b+ 8a)(c+ 8b)
≥

8abc

(5a+ 4b)(5b+ 4c)(5c+ a)

Proposed by Daniel Sitaru

Solution 1 (by Daniel Sitaru).

(a− b)2 ≥ 0

a2 − 2ab+ b2 ≥ 0

24a2 + 27ab+ 3b2 ≤ 25a2 + 25ab+ 4b2

3(8a2 + 8ab+ ab+ b2) ≤ 25a2 + 5ab+ 20ab+ 4b2

3(8ab+ b)(a+ b) ≤ (5a+ 4b)(5a+ b)

5a+ b

3(8a+ b)
≥ a+ b

5a+ 4b

AM−GM︷︸︸︷
≥ 2

√
ab

5a+ 4b
.



44

(1)
5a+ b

3(8a+ b)
≥ 2

√
ab

5a+ 4b
.

(2)
5b+ c

3(8b+ c)
≥ 2

√
bc

5b+ 4c

(3)
5c+ a

3(8c+ a)
≥ 2

√
ca

5c+ 4a

By multiplying the relationships (1), (2), (3),

(5a+ b)(5b+ c)(5c+ a)

27(a+ 8c)(b+ 8a)(c+ 8b)
≥ 8abc

(5a+ b)(5b+ c)(5c+ 4a)

�
Solution 2 (by Leonard Giugiuc).

We have (x− 1)2(25x2 + 2x+ 4) ≥ 0, x > 0, in particular. This is equivalent to

(5x2 + 4)(5x2 + 1) ≥ 6x(8x2 + 1).

Letting x =
√

a
b translates into

(5a+ 4b)(5a+ b) ≥ 6
√
ab(8a+ b).

This shows that for any number of variables,∏
cycl

(5a+ 4b)(5a+ b) ≥ 6n
∏
cycl

a
∏
cycl

(8a+ b),

where n is the number of variables. �
Aknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly shared a problem from the Romanian Mathematical
Magazine , with a solution of his mailed on a LaTeX file, which I appreciate greatly.
Solution 2 is by Leo Giugiuc.

183. An Inequality in Two or More Variables

Prove that if a, b, c > 0 and abc = 1 then

a

1 + a
+

b

(1 + a)(1 + b)
+

c

(1 + a)(1 + b)(1 + c)
≥

7

8

Proposed by Daniel Sitaru

Solution 1 (by Daniel Sitaru).

a

1 + a
+

b

(1 + a)(1 + b)
+

c

(1 + a)(1 + b)(1 + c)

=
a(1 + b)(1 + c) + b(1 + c) + c

(1 + a)(1 + b)(1 + c)

=
(1 + c)(a+ ab+ b+ 1)− 1

(1 + a)(1 + b)(1 + c)

=
(1 + c)(1 + b)(1 + c)− 1

(1 + a)(1 + b)(1 + c)

= 1− 1

(1 + a)(1 + b)(1 + c)

AM−GM︷︸︸︷
≥ 1− 1

2
√
a · 2
√
b · 2
√
c
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= 1− 1

8
√
abc

= 1− 1

8
=

7

8

�
A little extra(by Alexander Bogomolny)

The above statement and proof extend easily to a number n ≥ 2 of variables:

Prove that if ak > 0, k = 1, 2, . . . , n and

n∏
k=1

ak = 1 then

n∑
k=1

(
ak

k∏
i=1

1

1 + ai

)
≥ 2n − 1

2n
.

The key is the identity derived in the above proof:

n∑
k=1

(
ak

k∏
i=1

1

1 + ai

)
= 1−

n∏
i=1

1

1 + ai
.

The identity can be established by induction. Let sn =
∑n
k=1

(
ak
∏k
i=1

1
1+ai

)
and

Pn = 1−
∏n
i=1

1
1+ai

. Then

Sn+1 − Sn = an+1

∏n+1
i=1

1
1+ai

, whereas

Pn+1 − Pn =

n∏
i=1

1

1 + ai
−
n+1∏
i=1

1

1 + ai
=

n∏
i=1

1

1 + ai

(
1− 1

1 + an+1

)

=

n∏
i=1

1

1 + ai

( an+1

1 + an+1

)
= an+1

n+1∏
i=1

1

1 + ai
.

The identity holds for n = 3 (and obviously for n = 1 and n = 2) hence, it holds
for any larger n.

Solution 2 (by Amit Itagi).
Multiplying out: abc+ (ab+ c) + (bc+ a) + (ca+ b) ≥ 7, i.e.,

1+
(

1
c + c

)
+
(

1
a + a

)
+
(

1
b + b

)
≥ 7, which follows from the AM-GM inequality

applied to each pair of parantheses. �
Solution 3 (by Nassim Nicolas Taleb).

f =
c

(a+ 1)(b+ 1)(c+ 1)
+

b

(a+ 1)(b+ 1)
+

a

a+ 1

By rearranging the terms,

f = 1− 1

(a+ 1)(b+ 1)(c+ 1)

= 1− 1

1 + a+ b+ c+ ab+ bc+ ca+ abc

≥ 1− 27

(a+ b+ c+ 3)3
.

By the AM-GM inequality,

1 + a+ b+ c+ ab+ bc+ ca+ abc ≥ 8 ∗ 8
√
a4b4c4 = 8.

Can be generalized to n summands. �



46

Acknowledgment (by Alexander Bogomolny)
Daniel Sitaru has kindly posted the problem of his from the Romanian Mathe-
matical Magazine at the CutTheKnotMath faceboo page . He later mailed
his solution on a LaTeX file – something I appreciate greatly. Solution 2 is by Amit
Itagi; Solution 3 is by N. N. Taleb.
Roland van Gaalen has observed that for a sequence a1, a2, . . . that satisfy∏
i ai = 1, the sum

∑∞
k=1

(
ak
∏k
i=1

1
1+ai

)
= 1.

184. Dan Sitaru’s Cyclic Inequality in Three Variables II

Prove that if a, b, c > 0 and a+ b+ c = 3 then∑∑∑
cycl

√
1 +

1

a2
+

1

(a+ 1)2
≥

9

12− 2(ab+ bc+ ca)
+ 3.

Proposed by Daniel Sitaru

Solution 1 (same solution by Daniel Sitaru and Ravi Prakash).

We prove that
√

1 + 1
a2 + 1

(a+1)2 = 1 + 1
a −

1
a+1 . Indeed, by squaring,

1 +
1

a2
+

1

(a+ 1)2
= 1 +

1

a2
+

1

(a+ 1)2
+

2

a
− 2

a+ 1
− 2

a(a+ 1)

0 = 2
(1

a
− 1

a+ 1
− 1

a(a+ 1)

)
0 =

a+ 1− a− 1

a(a+ 1)
⇔ 0 = 0.

It follows that ∑√
1 +

1

a2
+

1

(a+ 1)2
=
∑(

1 +
1

a
− 1

a+ 1

)
=
∑(

1 +
a+ 1− a
a(a+ 1)

)
3 +

∑ 1

a2 + a

Bergstrom︷︸︸︷
≥ 3 +

9∑
a2 +

∑
a

= 3 +
9

(
∑
a2)− 2

∑
ab+ 3

= 3 +
9

9 + 3− 2
∑
ab

= 3 +
9

12− 2(ab+ bc+ ca)
.

�
Solution 2 (by Leonard Giugiuc).

We have

a2(a+ 1)2 + a2 + (a+ 1)2 = a2(a+ 1)2 + 2a(a+ 1) + 1

= (a2 + a+ 1)2.

Hence, the required inequality is equivalent to∑
cycl

1

a(a+ 1)
≥ 9

12− 2(ab+ bc+ ca)
⇔



47∑
cycl

1

a
≥ 9

12− 2(ab+ bc+ ca)
+
∑
cycl

1

a+ 1
.

We’ll show that 3
2 ≥

9
12−2(ab+bc+ca) which is equivalent to 3 ≥ ab+ bc+ ca and

the latter is well known consequence of the constraint a+ b+ c = 3.
Thus, suffice it to prove that

∑
cycl

1
a ≥

3
2 +

∑
cycl

1
a+1 , which is∑

cycl

(
1−a

2

)(
1

a(a+1) + 1
a

)
≥ 0.

But the functions 1−a
2 and 1

a(a+1) + 1
a are both decreasing, hence, by Chebyshev’s

inequality, ∑
cycl

(1− a
2

)( 1

a(a+ 1)
+

1

a

)

≥ 1

3

(3− a− b− c
2

)( 1

a(a+ 1)
+

1

a

)
= 0.

�
Solution 3 (same solution by Nguyen Thanh Nho and Subham Jaiswal).

By Minkowski’s inequality,∑
cycl

√
1 +

1

a2
+

1

(a+ 1)2
≥
√

9+
(∑
cycl

1

a

)2

+
(∑
cycl

1

a+ 1

)2

Now note that
1

a
+

1

b
+

1

c
≥ 1

a+ b+ c
=

9

3
= 3,

1

a+ 1
+

1

b+ 1
+

1

c+ 1
≥ 1

a+ b+ c+ 3
=

9

6
=

3

2

Thus, ∑
cycl

√
1 +

1

a2
+

1

(a+ 1)2
≥
√

9 + 9 +
9

4
=

9

2
.

Suffice it to prove that

9

2
≥ 9

12− 2(ab+ bc+ ca)
+ 3,

or equivalently,
3

2
≥ 9

12− 2(ab+ bc+ ca)
,

i.e.,

36− 6(ab+ bc+ ca) ≥ 12,

or

ab+ bc+ ca ≤ 3,

which is true because

ab+ bc+ ca ≤ 1

3
(a+ b+ c)2 =

1

3
32 = 3.

�
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Solution 4 (by Abdur Rahman).
y = x−2 being a convex function,

1 + x−2

2
≥
(1 + x

2

)−2

,

i.e.,

1 +
1

x2
≥ 8

(1 + x)2
,

implying

1 +
1

x2
+

1

(1 + x)2
≥ 9

(1 + x)2
.

Thus ∑
cycl

√
1 +

1

a2
+

1

(1 + a)2
≥
∑
cycl

√
9

(a+ 1)2
= 3

∑
cycl

1

a+ 1
.

By the AM-HM inequality,
∑
cycl

1
1+a ≥

9∑
cycl(a+1) = 3

2 so that

(1)
∑
cycl

√
1 +

1

a2
+

1

(1 + a)2
≥ 3

∑
cycl

1

a+ 1
≥ 9

2

Further,
∑
cycl ab ≤

(
∑
cycl)

2

3 = 3, such that 12− 2
∑
cycl ab ≥ 6 and

(2)
9

12− 2
∑
cycl ab

+ 3 ≤ 9

6
+ 3 =

9

2
.

From (1) and (2),

9

12− 2
∑
cycl ab

+ 3 ≤ 9

2
≤
∑
cycl

√
1 +

1

a2
+

1

(a+ 1)2

�
Solution 5 (by Mike Lawler).

First,

1 +
1

a2
+

1

(a+ 1)2
=

(a2 + a+ 1)2

a2(a+ 1)2

so that √
1 +

1

a2
+

1

(a+ 1)2
=
a2 + a+ 1

a(a+ 1)
= 1 +

1

a(a+ 1)
.

Second,
(a+ b+ c)2 = 9 = a2 + b2 + c2 + 2(ab+ bc+ ca)

so that
12− 2(ab+ bc+ ca) = a2 + b2 + c2 + 3.

So, the inequality reduces to∑
cycl

(
1 +

1

a(a+ 1)

)
≥ 9

3 + a2 + b2 + c2
+ 3,

which simplifies further to∑
cycl

1

a(a+ 1)
≥ 9

a2 + a+ b2 + b+ c2 + c
.
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For simplicity, let x = a(a+1), y = b(b+1), z = c(c+1). The required inequality
becomes

1

x
+

1

y
+

1

z
≥ 9

x+ y + z
.

Multiplying by (x+ y + z) we get

1 +
y

x
+
z

x
+
x

y
+ 1 +

z

y
+
x

z
+
y

z
+ 1 ≥ 9,

or, (y
x

+
x

y

)
+
(z
y

+
y

z

)
+
(x
z

+
z

x

)
≥ 6

which is true because, for w > 0, w + 1
w ≥ 2. �

Solution 6 (by Amit Itagi).√
1 + 1

a2 + 1
(a+1)2 = a2+a+1

a(a+1) ≥
3
a+1 (AM-GM to the numerator), implying

LHS ≥ 3
( 1

a+ 1
+

1

b+ 1
+

1

c+ 1

)
≥ 27

(a+ 1) + (b+ 1) + (c+ 1)

=
9

2
(AM-HM)

From power-mean inequality,

a2 + b2 + c2 ≥ (a+ b+ c)2

3
= 3,

implying

2(ab+ bc+ ca) = (a+ b+ c)2 − (a2 + b2 + c2) ≤ 32 − 3 = 6,

and,

RHS ≤ 9

12− 6
+ 3 =

9

2
.

Thus,

LHS ≥ 9

2
≥ RHS.

�
Aknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly shared a problem from his book Math Accent, with a
solution of his (Solution 1) mailed on a LaTeX file, which I appreciate greatly.
He also posted the problem at the CutTheKnotMath facebook page where it
gathered some comments. Solution 2 is by Leo Giugiuc; Solution 3 is by Nguyen
Thanh Nho and independently by Subham Jaiswal. Ravi Prakash came up with a
solution very close to Solution 1. Solution 4 is by Abdur Rahman; Solution 5 is by
Mike Lawler; Solution 6 is by Amit Itagi.

185. An Inequality with Sines But Not in a Triangle

If a, b, c ∈ (4,∞) and abc = 211 then∏
cycl

(
a2 sin

2π

a
+ (a+ 1)2 sin

2π

a+ 1

)
> 216.

Proposed by Daniel Sitaru
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Solution (same solution by Daniel Sitaru and Nassim Nicolas Taleb).
First off, x > 4⇒ x+ 1 > x > 4⇒ 1

x+1 <
1
x <

1
4 , so that

2

x+ 1
<

2

x
<

1

2
.

And, subsequently,

0 <
2π

x+ 1
<

2π

x
<
π

2
.

Now, applying Jordan’s inequality,

sin
2π

x
≥ 2

π
· 2π

x
=

4

x
,

implying

(1) a2 sin
2π

a
≥ 4a

and also

(2) (a+ 1)2 sin
2π

a+ 1
≥ 4(a+ 1).

By adding (1) and (2),

a2 sin
2π

a
+ (a+ 1)2 sin

2π

a+ 1
≥ 8a+ 4

AM−GM︷︸︸︷
> 2

√
8a · 4 = 8

√
2a.∏(

a2 sin
2π

a
+ (a+ 1)2 sin

2π

a+ 1

)
> 83 · 2

√
abc

= 29 · 2 ·
√

2 · 211 = 210 · 26 = 216.

�
Aknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly posted the problem of his from the Romanian Mathe-
matical Magazine at the CutTheKnotMath facebook page and later mailed
me his solution on o LaTeX file which is greatly appreciated. N.N. Taleb has come
independently with the same solution.

186. An Inequality with Arbitrary Roots

If n ∈ N, n ≥ 2, abc > 1, a+ b+ c = 3n+1, then∑
cycl

(
n

√
a+ n
√
a+

n

√
a− n
√
a
)
< 18

Proposed by Daniel Sitaru

Solution 1 (by Khanh Hung Vu).
By the AM-GM inequality,

n

√
a+ n
√
a =

n

√
a
n−1
n (a

1
n+a−

n−2
n ) ≤ (n− 1)a

1
n + a

1
n + a−

n−2
n

n

= a
1
n +

1

n
a−

n−2
n .

Similarly,
n

√
a− n
√
a ≤ a 1

n − 1

n
a−

n−2
2
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so that

(1)
n

√
a+ n
√
a+

n

√
a− n
√
a ≤ 2 n

√
a.

On the other hand, again by the AM-GM inequality, n
√
a(3n)n−1 ≤ a+(n−1)3n

n ,
implying

(2) n
√
a ≤ a+ (n− 1)3n

n n
√

(3n)n−1
=
a+ (n− 1)3n

n3n−1
.

From (1) and (2),

n

√
a+ n
√
a+

n

√
a− n
√
a ≤ 2a+ (n− 1)3n

n3n−1
.

Thus ∑
cycl

(
n

√
a+ n
√
a+

n

√
a− n
√
a
)
≤
∑
cycl

2a+ (n− 1)3n

n3n−1

=
2
∑
cycl a+ (n− 1)3n+1

n3n−1
=

2 · 3n+1 + (n− 1)3n+1

n3n−1

=
(n+ 1)3n+1

n3n−1
=

9(n+ 1)

n
< 18.

�
Solution 2 (by Abdur Rahman).

By the mth power theorem, with m = 1
n , we get

n
√
a+ n
√
a+ n

√
a− n
√
a

2
≤
(a+ n

√
a+ a− n

√
a

2

) 1
n

= n
√
a,

so that
n

√
a+ n
√
a+

n

√
a− n
√
a ≤ 2 n

√
a.

Summing up, ∑
cycl

(
n

√
a+ n
√
a+

n

√
a− n
√
a

)
≤ 2

∑
cycl

n
√
a

≤ 2 · 3

(∑
cycl a

3

) 1
n

= 6
(3n+1

3

) 1
n

= 6 · 3 = 18.

�
Solution 3(by Amit Itagi).

From power-mean inequality,

2 n
√
a >

(
n

√
a+ n
√
a+

n

√
a− n
√
a
)

, (and its cyclic variants)

and

6
n

√
a+ b+ c

3
= 18 ≥ 2( n

√
a+

n
√
b+ n
√
c).

Putting the two together completes the proof. Note that the first inequality has
> and not ≥ because the two terms in the sum cannot be equal. �
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Solution 4 (by Nassim Nicolas Taleb).

By concavity of (.)
1
n with n > 2, by Jensen’s inequality,

1

2

(
a− a 1

n

) 1
n

+
1

2

(
a+ a

1
n

) 1
n ≤ a 1

n

Since

(
1
3

(
a

1
n + b

1
n + c

1
n

))n
≤ 1

3 (a+ b+ c), we have

lhs ≤ 2
(
a

1
n + b

1
n + c

1
n

)
≤ 2(3n−13n+1)

1
n = 18

�
Acknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly posted the problem of his from the Romanian Math-
ematical Magazine at the CutTheKnotMath facebook page . Solution 1 is
by Khanh Hung Vu; Solution 2 is by Abdur Rahman; Solution 3 is by Amit Itagi;
Solution 4 is by N. N. Taleb.

187. An Inequality with Inradius and Excenters

In ∆ABC, I is the incenter, Ia, Ib, Icare the excenters, r is the inradius.

Prove that∑
cycl

1

II2
a

+
∑
cycl

1

IaI2
b

≤ 1

4r2
.

Proposed by Daniel Sitaru

Solution 1 (by Kevin Soto Palacios).
We know that (with R the circumradius)

IIa = 4R sin
A

2
IIb = 4R sin

B

2
IIc = 4R sin

C

2

IaIb = 4R cos
C

2
IbIc = 4R cos

A

2
IcIa = 4R cos

B

2

and also 1
a2 + 1

b2 + 1
c2 ≤

1
r2 . The required inequality is equivalent to

1

16R2

∑
cycl

csc2 A

2
+

1

16R2

∑
cycl

sec2 A

2
≤ 1

4r2
⇔

1

16R2

(∑
cycl

(
csc2 A

2
+ sec2 A

2

))
≤ 1

4r2
⇔

1

16R2

(∑
cycl

(
tan

A

2
+ cot

A

2

)2
)
≤ 1

4r2
⇔

1

16R2
(4 csc2A+ 4 csc2B + 4 csc2 C) =

1

a2
+

1

b2
+

1

c2
≤ 1

4r2
.

�
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Solution 2 (by Soumava Chakraborty).
We know that (with R the circumradius)

IIa = a sec
A

2
= 2R sinA sec

A

2
= 4R sin

A

2
cos

A

2
sec

A

2

= 4R sin
A

2
,

IaIb = csc
A

2
= 2R sinA csc

A

2
= 4R sin

A

2
cos

A

2
csc

A

2

= 4R cos
A

2
It follows that∑

cycl

1

II2
a

+
∑
cycl

1

IaI2
b

=
1

16R2

∑
cycl

(
1

sin2 A
2

+
1

cos2 A
2

)

=
1

16R2

∑
cycl

1

sin2 A
2 cos2 A

2

=
∑
cycl

1

(4R sin A
2 cos A2 )2

=
∑
cycl

1

(2R sinA)2
=
∑
cycl

1

a2
=

∑
cycl a

2b2

a2b2c2

≤ 4R2s2

a2b2c2
=

4R2s2

16R2r2s2
=

1

4r2
,

where at the penultimate step we used Goldstone’s inequality :∑
cycl a

2b2 ≤ 4R2s2, with s the semiperimeter of ∆ABC. �
Ackonwledgment (by Alexander Bogomolny)

I am grateful to Daniel Sitaru for kindly posting a problem of his from the Ro-
manian Mathematical Magazine at the CutTheKnotMath facebook page .
Solution 1 is by Kevin Soto Palacios, Solution 2 is by Soumava Chakraborty.

188. Dan Sitaru’s Cyclic Inequality in Three Variables III

If a, b, c > 1 then∑∑∑
cycl

a

(a− 1)2
≥
√

6(10− a− b− c).

Proposed by Daniel Sitaru

Solution 1 (by Leonard Giugiuc).
The problem is easily equivalent to

4

√∑
cycl

a+ 1

a2
≥
√

6(7− a− b− c),

for a, b, c > 0.

Let’s find m,n such that
√
x+1
x ≥ mx+ n, for x > 0. This is the same as

f(x) = mx2 + nx−
√
x+ 1 ≤ 0. Assuming f(1) = 0,m+ n =

√
2. Assuming

f ′(1) = 0, 2m+ n =
√

12
√

2, solving which m = − 3
2
√

2
and n = 7

2
√

2
.

We shall prove that indeed g
√
x+1
x ≥ −3x+7

2
√

2
, for x > 0.

If 0 < x ≤ 7
3 , the inequality is equivalent to (x− 1)2(9x2 − 24x− 8) ≤ 0,

which is true because 4+2
√

6
3 ≥ 7

3 .
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If g > 7
3 then, obviously,

√
x+1
x > 0 > −3x+7

2
√

2
.

Back to the original problem, by Jensen’s inequality,√
3
∑
cycl

a+ 1

a2
≥
∑
cycl

√
a+ 1

a

≥ 3(7− a− b− c)
2
√

2
.

Multiply by 4 to get the required inequality. �
Solution 2 (by Alexander Bogomolny).

This solution is more of an illustration to be first one.
By Jensen’s inequality, √

3
∑
cycl

a+ 1

a2
≥
∑
cycl

√
a+ 1

a
.

Thus suffice it to prove that, for > 0,
√
x+1
x > 7−3x

2
√

2
. We can see that(√

x+1
x

)
(1) =

√
2 and

(√
x+1
x

)′
(1) = − 3

2
√

2
which makes −3x+7

2
√

2
tangent to

√
x+1
x

at x = 1.

The second derivative of x+1
x is easily seen to be negative, making the function

convex and insuring the inequality
√
x+ 1

x
>

7− 3x

2
√

2
.

�
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Extra (by Alexander Bogomolny)
Once we surmised the secret behing the problem design, we may try to modify the

problem. For example, at x = 3, the tangent to function f(x) =
√
x+1
x is given by

y = − 5
36 + 13

12 , implying √∑
cycl

a+ 1

a2
≥
∑
cycl

√
a+ 1

a
√

3

≥
√

3

108
[117− 5(a+ b+ c)].

Solution 3 (by Amit Itagi).
Let x = a − 1, y = b − 1, and z = c − 1. Thus, x, y, z > 0. Let us rewrite the
inequality as

4

√
x+ 1

6x2
+
y + 1

6y2
+
z + 1

6z2
+ (x+ y + z) ≥ 7.

x+ y + z ≥ 3(xyz)
1
3 (AM-GM)

and

4

√
x+ 1

6x2
+
y + 1

6y2
+
z + 1

6z2

= 4

√
1

3

[1

2

( 1

x
+

1

x2

)
+

1

2

(1

y
+

1

y2

)
+

1

2

(1

z
+

1

z2

)]
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≥ 4

√
1

3

( 1

x
3
2

+
1

y
3
2

+
1

z
3
2

)
(bracket-wise AM-GM)

≥ 4

3

( 1

x
3
4

+
1

y
3
4

+
1

z
3
4

)
(Jensen’s/ concavity of the square root)

≥
( 1

xyz

) 1
4

. (AM-GM)

Let q = (xyz)
1
7 . Thus,

LHS ≥ 4
(1

q

) 7
4

+ 3q
7
3 = 7

[( 1
q

) 7
4

7
4

+
q

7
3

7
3

]
≥ 7 (Young’sinequality).

Let x = a − 1, y = b − 1, and z = c − 1. Thus, x, y, z > 0. Let us rewrite the
inequality as

4

√
x+ 1

6x2
+
y + 1

6y2
+
z + 1

6z2
+ (x+ y + z) ≥ 7.

x+ y + z ≥ 3(xyz)
1
3 (AM-GM)

and

4

√
x+ 1

6x2
+
y + 1

6y2
+
z + 1

6z2

= 4

√
1

6

( 1

x
+

1

x2
+

1

y
+

1

y2
+

1

z
+

1

z2

)
≥ 4
( 1

xyz

) 1
4

. (AM-GM)

Let = (xyz)
1
7 . Thus,

LHS ≥ 4
(1

q

) 7
4

+ 3q
7
3 = 7

[( 1
q

) 7
4

7
4

+
q

7
3

7
3

]
≥ 7 (Young’s inequality).

�
Solution 4 (by Nassim Nicolas Taleb).

Proof by progressive reduction to one single variable.

Let f = 4
√

a
(a−1)2 + b

(b−1)2 + c
(c−1)2 −

√
6(−a− b− c+ 10).

Let x = 1
(a−1) , y = 1

(b−1) , z = 1
(c−1) .

Now,

f = 4
√
x2 + x+ y2 + y + z2 + z +

√
6
( 1

x
+

1

y
+

1

z
− 7
)

≥ 4
√
x2 + x+ y2 + y + z2 + z + 3

√
6 3

√
1

xyz
− 7
√

6

≥
√

6

(
4 4
√
x 4
√
y 4
√
z +

3
3
√
x 3
√
y 3
√
z
− 7

)
Now let X = xyz,X > 0. We can prove that:

4X
7
12 + 3
3
√
X

− 7 ≥ 0

since it is a single function with one variable and its minimum is 0 for
X = x = y = z = 1. �
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Acknowledgment (by Alexander Bogomolny)
Daniel Sitaru has kindly posted the problem of his from the Romanian Mathe-
matical Magazine at the CutTheKnotMath facebook page . Leo Giugiuc has
commented with his solution (Solution 1). Solution 3 (and its concise version) is
by Amit Itagi; Solution 4 is by N. N. Taleb.

189. Dan Sitaru’s Cyclic Inequality In Three Variables with
Constraints IV

Prove that if x, y, z > 0; 6xyz =
1

x+ 2y + 3z
then:

(4x2y2 + 1)(36y2z2 + 1)(9x2z2 + 1)

230x2y2z2
≥ 1

(x+ 2y + 3z)2

Proposed by Daniel Sitaru

Solution 1 (by Daniel Sitaru).
First of all, we simplify the problem by replacing the variables:
a = x, b = 2y, c = 3z, which reduces the problem to
Prove that if a, b, c > 0; abc(a+ b+ c) = 1 then:

(a2b2 + 1)(b2c2 + 1)(c2a2 + 1)

a2b2c2
≥ 64

(a+ b+ c)2
.

We rewrite the inequality as(
a2 +

1

b2

)(
b2 +

1

c2

)(
c2 +

1

a2

)
≥ 64

(a+ b+ c)2
.

Note that

a2 +
1

b2
= a2 +

abc(a+ b+ c)

b2
= a2 +

ac(a+ b+ c)

b

=
a2b+ a2c+ ac(b+ c)

b
=
a2(b+ c) + ac(b+ c)

b

=
a(b+ c)(c+ a)

b
.

Similarly b+ 1
c2 = b(c+a)(a+b)

c and c2 + 1
a2 = c(a+b)(b+c)

a .
By multiplying the three relationships,(

a2 +
1

b2

)(
b2 +

1

c2

)(
c2 +

1

a2

)
≥ a(b+ c)(a+ c) · b(a+ c)(b+ a)c · c(a+ b)(c+ b)

abc

= (a+ b)2(b+ c)2(c+ a)2

AM−GM︷︸︸︷
≥ (2

√
ab)2 · (2

√
bc)2 · (2

√
ac)2

= 64a2b2c2 =
64

(a+ b+ c)2

The equality holds if a = b = c = 1
4√3

, which follows from

a · a · a =
1

a+ a+ a
⇔ a3 =

1

3a
⇒ a4 =

1

3
⇒ a =

1
4
√

3
.
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The equality in the original relationship holds for

x =
1
4
√

3
; y =

1

2 · 4
√

3
; z =

1

3 · 4
√

3

�
Solution 2 (by Amit Itagi).

Using the constraint, the inequality can be written as

(4x2y2 + 1)(36y2z2 + 1)(9x2z2 + 1) ≥ 64(6xyz)4

Let,

x =

√
ab

c
, 2y =

√
bc

a
, 3z =

√
ca

b
.

Thus, the inequality and the constraint, respectively, become

(a2 + 1)(b2 + 1)(c2 + 1) ≥ 64(abc)2, ab+ bc+ ca = 1.

Let p = 3(abc)
2
3 . AM-GM gives

1 = ab+ bc+ ca ≥ 3(abc)
2
3 = p.

The inequality can be simplified to

1 + (a2 + b2 + c2) + (a2b2 + b2c2 + c2a2)− 63(abc)2 ≥ 0.

LHS ≥ 1 + 3(abc)
2
3 + 3(abc)

4
3 − 63(abc)2 (AM-GM)

= 1 + p+
p2

3
− 7

3
p3

=
(1− p)

3
[7(1− p)2 − 20(1− p) + 16]

=
(1− p)

3

{[
(1− p)

√
7− 10√

7

]2
+

12

7

}
≥ 0,

from the constraint. �
Acknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly posted the above problem of his from the Romanian
Mathematical Magazine at the CutTheKnotMath facebook page and later
emailed me his solution. Solution 2 is by Amit Itagi.

Refinement on Dan Sitaru’s Cyclic Inequality In Three Variables

By Nassim Nicolas Taleb

Preliminaries
An earlier page dealt with a problem by Dan Sitaru:

Prove that if x, y, z > 0; 6xyz =
1

x+ 2y + 3z
then:

(4x2y2 + 1)(36y2z2 + 1)(9x2z2 + 1)

2304x2y2z2
≥ 1

(x+ 2y + 3z)2

While solving that problem, N. N. Taleb has observed (How the problem came
about below) the existence of an upper bound on the right-hand side of the in-
equality and suggested a refinement that is the subject of the present page. An
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early attempt of solving the new problem (Solution 1) relied on the graphics pro-
duced by wolframalpha. Leo Giugiuc devised Solution 2, Amit Itagi Solution 3.
Problem

Prove that if x, y, z > 0; 6xyz =
1

x+ 2y + 3z
then

(4x2y2 + 1)(36y2z2 + 1)(9x2z2 + 1)

2304x2y2z2
≥ 1

3
√

3

How the problem came about
First of all, we simplify the problem by replacing the variables := x, b = 2y, c = 3z,
which reduces the problem to
Prove that if a, b, c > 0; abc(a+ b+ c) = 1 then:

(a2b2 + 1)(b2c2 + 1)(c2a2 + 1)

a2b2c2
≥ 64

(a+ b+ c)2
.

We start with the constraint by applying the AM-GM inequality:

1 ≥ (abc)(a+ b+ c) ≥ abc · 3 3
√
abc = 3(abc)

4
3 so that abc ≤ 1

3
3
4

, implying a

bound for the RHS of the inequality,

1

(a+ b+ c)2
= (abc)2 ≤

(
1

3
3
4

)2

=
1

3
3
2

.

Thus, the above problem.

Solution 1.
We start with Amit Itagi’s approach for solving the original problem (and copied
from Solution 3 below). Let,

x =

√
ab

c
, 2y =

√
bc

a
, 3z =

√
ca

b
.

Thus, the inequality and the constraint, respectively, become

(a2 + 1)(b2 + 1)(c2 + 1) ≥ 64abc

3
√

3
, ab+ bc+ ca = 1.

Define p = 3
√
abc. From the constraint, 1 ≥ 3

3
√
a2b2c2 = 3 3

√
p2, implying

p ∈
[
0, 1

3
√

3

]
. Now, for the left-hand side,

(a2 + 1)(b2 + 1)(c2 + 1) = 1 +
∑
cycl

a2 +
∑
cycl

a2b2 + a2b2c2

≥ 1 + 3
3
√
a2b2c2 + 3

3
√
a4b4c4 + a2b2c2

= 1 + 3p2 + 3p4 + p6

We, therefore, define the function

f(p) = 1 + 3p2 + 3p4 + p6 − 64

3
√

3
p3.
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The graph below affirms the inequality f(p) ≥ 0, for p ∈
[
0, 1

3
√

3

]
if we notice

that f
(

1√
3

)
= 0:

�
Solution 2.

The smartest way is the following. Denote 6x2yz = a
3 , 12xy2z = b

3 , 18xyz2 = c
3 .

Then a+ b+ c = 3 and the required inequality becomes

(ab+ 3c)(bc+ 3a)(ca+ 3b) ≥ 64(abc)
3
2 .

Let’s remark that, since abc ≤ 1, (abc)α ≥ (abc)β , for α ≤ β. By the AM-GM
inequality,

ab+ 3c = ab+ c+ c+ c ≥ 4(abc3)
1
4

Similarly we obtain two additional inequalities, with the product of the three

(ab+ 3c)(bc+ 3a)(ca+ 3b) ≥ 43(abc)
5
4 ≥ 64(abc)

3
2

because 5
4 <

3
2 . �

Solution 3.
Using the constraint, the inequality can be written as

(4x2y2 + 1)(36y2z2 + 1)(9x2z2 + 1) ≥ 64(6xyz)2

3
√

3
.

Let,

x =

√
ab

c
, 2y =

√
bc

a
, 3z =

√
ca

b
.

Thus, the inequality and the constraint, respectively, become

(a2 + 1)(b2 + 1)(c2 + 1) ≥ 64abc

3
√

3
, ab+ bc+ ca = 1.

Let =
√

3(abc)
1
3 . AM-GM gives

1 = ab+ bc+ ca ≥ 3(abc)
2
3 = p2 or 1 ≥ p.

The inequality can be simplified to

1 + (a2 + b2 + c2) + (a2b2 + b2c2 + c2a2) + (abc)2 − 64abc

3
√

3
≥ 0.
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LHS ≥ 1 + 3(abc)
3
2 + 3(abc)

4
3 + (abc)2 − 64abc

3
√

3
(AM-GM)

= 1 + p2 +
p4

3
+
p6

27
− 64p3

27

=
(p− 1)(p− 3)(p4 + 4p3 + 22p2 + 12p+ 9)

27
≥ 0,

because (p− 1)(p− 3) ≥ 0 due to the constraint 0 ≤ p ≤ 1. �

190. Small Triangle from Small Triangle

If 0 < A < B + C, 0 < B < C +A, 0 < C < A+B,A+B + C = π then∏
cycl

(sinA+ sinB − sinC) > 0.

Proposed by Daniel Sitaru

Solution 1 (by Daniel Sitaru).
Let V XY Z be a tetrahedron as depicted below

∠XV Y = 2A;∠ZV Y = 2C;∠XV Y = 2A, V X = V Y = V Z = 1.

XY 2 = V X2 + V Y 2 − 2V X · V Y · cos(∠XV Y ) = 12 + 12 − 2 · 1 · 1 · 1 cos 2A

= 2(1− cos 2A) = 2(1− 1 + 2 sin2A) = 4 sin2A.

Thus XY = 2 sinA. Similarly, XZ = 2 sinB, Y Z = 2 sinC.

In ∆XY Z,XY +XZ > Y Z so that 2 sinA+ 2 sinB > 2 sinC, i.e.,

sinA+ sinB − sinC > 0. Similarly,

sinB + sinC − sinA > 0 and sinC + sinA− sinB > 0. Hence,∏
cycl

(sinA+ sinB − sinC) > 0.

�
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Solution 2 (by Amit Itagi).
WLOG, let A ≥ B ≥ C.π > A+B+C ≥ 2A. Thus, A is acute and so are B and
C. From the ordering of A,B,C and monotonicity of sin in the first quarter,

sinA > sinB > sinC and, therefore, sinA+ sinB > sinC.

Additionally,

sinA− sinB = 2 sin
(A−B

2

)
cos
(A+B

2

)
< 2 sin

C

2
cos

C

2
= sinC.

All the angles in the expressions are acute, C > A−B and sin increases mono-
tonically in the first quarter, A+ B > C and cos decreases monotoically in the
first quarter.

LHS = (sinA+ sinB − sinC)(sinB + sinC − sinA)(sinC + sinA− sinB)

= (sinA+ sinB − sinC)[sin2 C − (sinA− sinB)2] > 0,

from the two inequalities already proven. �
Solution 3 (by Leonard Giugiuc).

The numbers A,B, π − A − B are angles of a triangle. Hence, the triangle
inequalities, combined with the Law of Sines, give

sinA+ sinB > sin(π −A−B) = sin(A+B).

Suffice it to show that sin(A+B) ≥ sinC which is equivalent to

sin
(
A+B−C

2

)
cos
(
A+B+C

2

)
≥ 0, which is true since 0 < A+B−C

2 < π
2 and also

0 <
A+B + C

2
<
π

2
�

Remark (by Alexander Bogomolny)
The three triangle inequalities in the problem inform us that the quantities A,B,C
may be looked as the side lengths of a triangle. The condition A+B +C < π tells
us that the triangle is not big.
The conclusion of the problem is equivalent to saying that sinA, sinB, and sinC
also sinC also form a triangle, whose perimeter does not exceed 3 hence the cap-
tion.
Furthermore, the given triangle is necessarily acute: 0 < A,B,C < π

2 . This is
because, say, A > π

2 would lead to B + C < π
2 , in contradiction with A < B + C.

We may also claim that the inverse is also true: the angles of an acute triangle
satisfy the three triangles inequalities.
Indeed, from A+B + C = π and, say A < π

2 , it follows that B + C > π
2 > A.

Thus, a triangle is acute iff its angles can be used as the side lengths of a triangle.

Akcnowledgment (by Alexander Bogomolny)
Daniel Sitaru has kindly sent me this problem along with the above solution of his.
Solution 2 is by Amit Itagi; Soution 3 is by Leonard Giugiuc.



63

191. An Inequality in Two or More Variables II

Prove that if a, b, c ≥ 0 then

(a+ 1)a+1 · (b+ 1)b+1 · (c+ 1)c+1 ≤ ea+b+c ·
√
ea

2+b2+c2

Proposed by Daniel Sitaru

Solution 1 (by Daniel Sitaru).
Consider function f : [0,∞)→ R, defined by

f(x) = (x+ 1) ln(x+ 1)− x− x2

2
.

f ′(x) = ln(x+ 1) + 1− 1− x = ln(x+ 1)− x

f ′′(x) =
1

1 + x
− 1 = − x

1 + x
< 0

f ′′(x) ≤ f ′′(0)⇒ f ′(x) ≤ f ′(0) = 0⇒ f(x) ≤ 0, (∀)x ≥ 0

(x+ 1) ln(x+ 1)− x− x2

2
≤ 0

ln(x+ 1)x+1 ≤ x+
x2

2

(x+ 1)x+1 ≤ ex+ x2

2 ; (∀)x ≥ 0

(1) (a+ 1)a+1 ≤ ea ·
√
ea2

(2) (b+ 1)b+1 ≤ eb ·
√
eb2

(3) (c+ 1)c+1 ≤ ec ·
√
ec2

Multiply (1)-(3) to get

(a+ 1)a+1 · (b+ 1)b+1 · (c+ 1)c+1 ≤ ea+b+c ·
√
ea2+b2+c2

�
Solution 2 (by Nassim Nicolas Taleb).

Let x = a+ 1, etc. The inequality becomes:

xxyyzz ≤ ex+y+z−3
√
e(x−1)2+(y−1)2+(z−1)2 , x, y, z > 1

Taking logs on both sides:

x log(x) + y log(y) + z log(z) ≤ 1

2
(x2 + y2 + z2 − 3)

Rewritting. We need to minimize

f(x, y, z) = x2 − 2x log(x) + y2 − 2y log(y) + z2 − 2z log(z)− 3

which is additively separable into f(x, y, z) = f1(x) + f2(y) + f3(z), with
f1(x) = x2 − 2x log(x)− 1, etc. The minimum for f1(x) is for x = 1, and so on,
hence f(x, y, z) = 0 for x = y = z = 1, which corresponds to

a = b = c = 0

�
Acknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly posted the problem of his from the Romanian Mathe-
matical Magazine at the CutTheKnotMath facebook page . He later mailed
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his solution on a LaTex file – something I appreciate greatly. Solution 2 is by
N.N. Taleb. As the solution show, the inequality can be extende to any number of
variable.

192. Inequality 101 from the Cyclic Inequalities Marathon

Let a, b, c be positive real numbers, subject to a+ b+ c = 1Prove that∑∑∑
cycl

c5

(a+ 1)(b+ 1)
≥

1

144

Proposed by George Apostolopoulos

Solution 1 (by Soumava Chakraborty).
WLOG, a ≥ b ≥ c, implying 1

(b+1)(c+1) ≥
1

(c+1)(a+1) ≥
1

(b+1)(c+1) . It follows by

Chebyshev’s inequality that

(1) LHS ≥ 1

3
(
∑
cycl

a5)
(∑
cycl

1

(b+ 1)(c+ 1)

)
By Chebyshev’s inequality,

(2)
∑
cycl

a5 ≥ 1

34(
∑
cycl a)5

=
1

81
.

Further, by Bergström’s inqequality,

(3)
∑
cycl

1

(b+ 1)(c+ 1)
≥ 9∑

cycl ab+ 2
∑
cycl a+ 3

=
9∑

cycl ab+ 5

≥ 9
16
3

=
27

16

because
∑
cycl ab ≤

1
3 (
∑
cycl a)2. With (1)-(3),

LHS ≥ 1

3
· 1

81
· 27

16
=

1

144
�

Solution 2 (by Soumitra Mandal).
By Hölder’s inequality,

1 = (a+ b+ c)5

≤

(∑
cycl

a5

(b+ 1)(c+ 1)

)(∑
cycl

(b+ 1)(c+ 1)

)
(1 + 1 + 1)3.

It follows that (∑
cycl

a5

(b+ 1)(c+ 1)

)
(ab+ bc+ ca+ 5)33 ≥ 1.

The latter implies( (a+ b+ c)2

3
+ 5
)(∑

cycl

a5

(b+ 1)(c+ 1)

)
33 ≥ 1.

And, finally, ∑
cycl

a5

(b+ 1)(c+ 1)
≥ 1

33
· 3

16
=

1

144
.
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Equality is attained at a = b = c = 1
3 . �

Remark (by Alexander Bogomolny)
The latter solution appears to equally well tackle another inequality:∑

cycl

a5

(a+ 1)(b+ 1)
≥ 1

144
.

Solution 3 (by Nassim Nicolas Taleb).
We use the inequality variant

(1)
(1

3
(ap + bp + cp)

) 1
p ≥

(1

3
(aq + bq + cq)

) 1
q

, p ≥ q

Let p = 5, q = 1:
5
√
a5 + b5 + c5

3
√

3
≥ 1

3
(a+ b+ c),

so

a5 + b5 + c5 ≥ 1

81

On the other hand 1
27 (a+ b+ c+ 3)3 = 64

27 ≥ (a+ 1)(b+ 1)(c+ 1)
Expanding the lhs:

lhs =
a6 + a5 + b6 + b5 + c6 + c5

(a+ 1)(b+ 1)(c+ 1)
≥ 27

64

( 1

81
+ a6 + b6 + c6

)
Let p = 6, q = 1 in (1),

a6 + b6 + c6 ≥
( 6
√

3

3

)6

=
1

243

So

lhs ≥ 27

64

( 1

81
+

1

243

)
=

1

144
�

Aknowledgment (by Alexander Bogomolny)
Daniel Sitaru has kindly emailed me a copy of the collection RMM CYCLIC
INEQUALITIES MARATHON 101-200 . The problem is due to George
Apostolopoulos. I copy two proofs: Solution 1 by Soumava Chakraborty, Solution
2 by Soumitra Mandal. Solution 3 is by N. N. Taleb.

193. Adil Abdulayev’s Inequality With Angles, Medians,
Inradius and Circumradius

In any ∆ABC,

A

ma

+
B

mb

+
C

mc

≤
3π

4R+ r
.

Proposed by Adil Abdullayev

Solution (by Daniel Sitaru).
By Chebyshev’s inequality,∑

cycl

A

ma
≥ 1

3

∑
cycl

A ·
∑
cycl

1

ma
· π

3

∑
cycl

1

ma
.
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By Bergström inequality,

π

3

∑
cycl

1

ma
≥ π

3

9∑
cyclma

≥ π

3
· 9

4R+ r

=
3π

4R+ r
,

due to Leuenberger’s Inequality ma +mb +mc ≤ 4R+ r. �
Aknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly posted this problem by Adil Abdulayev at the CutThe-
KnotMath facebook page , along with his solution. The problem was originally
posted to the Romanian Mathematical Magazine .

194. An Inequality with Sides, Cosines, and Semiperimet

In any ∆ABC,∑∑∑
cycl

a2(b cosB + c cosC) ≤
8s3

9

Proposed by Daniel Sitaru

Solution 1 (same solution by Kevin Soto Palacios and Amit Itagi).
The problem is the same as∑

cycl

a2(b cosB + c cosC) ≤ (a+ b+ c)3

9
.

Due to the AM-GM inequality , suffice it to prove that∑
cycl

a2(b cosB + c cosC) ≤ 3abc

We shall show that in fact∑
cycl

a2(b cosB + c cosC) = 3abc.

We’ll prove that identity in the form∑
cycl

a2(b2 + c2)(2bc cosA) = 6a2b2c2. Indeed,

∑
cycl

a2(b2 + c2)(2bc cosA) =
∑
cycl

a2(b2 + c2)(b2 + c2 − a2)

=
∑
cycl

[
a2(b2 + c2)2 −

∑
cycl

a4(b2 + c2)

]

=
∑
cycl

[a2b4 + a2c4 + 2a2b2c2]−
∑
cycl

[a4b2 + a4c2] = 6a2b2c2.

�
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Solution 2 (by Kevin Soto Palacios).
As in Solution 1, we aim to prove∑

cycl

a2(b cosB + c cosC) = 3abc.

This is equivalent to

2
∑
cycl

sin2A(sin 2B + sin 2C) = 12 sinA sinB sinC.

And further,

2
∑
cycl

sin2A(sin 2B + sin 2C) =
∑
cycl

(1− sin 2A)(sin 2B + sin 2C)

= 2
∑
cycl

sin 2A−
∑
cycl

sin(2B + 2C)

= 2
∑
cycl

sin 2A+
∑
cycl

sin 2A = 3
∑
cycl

sin 2A = 12 sinA sinB sinC,

as is well known. �
Acknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly posted the problem at the CutTheKnotMath facebook
page . This problem of his was originally published at the Romanian Mathe-
matical Magazine . Solutions 1 and 2 are by Kevin Soto Palacios. Amit Itagi
independently came up with Solution 1.

195. Seyran Ibrahimov’s Inequality

In any ∆ABC,
√

3s ·
∑∑∑
cycl

ma ≤ 20R2 + r2.

Proposed by Seyran Ibrahimov

Solution (same solution by Daniel Sitaru and George Apostolopoulos).

We’ll emply Leuenberger’s inequality
∑
cyclma ≤ 4R + r and Mitrinovic̈’s in-

equality
∑
cycl a ≤ 3

√
3R:

√
3s ·

∑
cycl

ma ≤
√

3 · (4R+ r) · 1

2
3
√

3R

=
36R2 + 9Rr

2
.

Suffice it to prove that 36R2+9Rr
2 ≤ 20R2 + r2. The latter is equivalent to

4R2 − 9Rr = 2r2 ≥ 0, i.e., (R − 2r)(4R − r) ≥ 0 which is true due to Euler’s
inequality R ≥ 2r. �

Acknowledgment (by Alexander Bogomolny)
Daniel Sitaru has kindly posted the problem and his solution at the CutThe-
KnotMath facebook page and helped me out when I lost the link. I am deeply
in Dan’s debt. The problem is by Seyran Ibrahimov. George Apostolopoulos gave
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the same solution. This problem of his was originally published at the Romanian
Mathematical Magazine .

196. An Inequality with Two Pairs of Triplets

If a, b, c, x, y, z ∈ R, xyz 6= 0, then

(a2 + b2 + c2)
( 1

x2
+

1

y2
+

1

z2

)
+

2(ab+ bc+ ca)(x+ y + z)

xyz
≥ 0

Proposed by Daniel Sitaru

Solution 1 (by Ravi Prakash). Pure algebra

(a2 + b2 + c2)
( 1

x2
+

1

y2
+

1

z2

)
+

2(ab+ bc+ ca)(x+ y + z)

xyz

=
a2

x2
+
b2

y2
+
c2

z2
+

2ab

xy
+

2bc

yz
+

2ca

zx

+
a2

y2
+
b2

z2
+
c2

x2
+

2ab

yz
+

2bc

zx
+

2ca

xy

+
a2

z2
+
b2

x2
+
c2

y2
+

2ab

zx
+

2bc

xy
+

2ca

yz

=
(a
x

+
b

y
+
c

z

)2

+
(a
y

+
b

z
+
c

x

)2

+
(a
z

+
b

x
+
c

y

)2

≥ 0.

�
Solution 2 (by Amit Itagi).
xyz 6= 0 implies the finiteness of p = 1

x , q = 1
y , and r = 1

z . Thus, the inequality

can be written as

(a2 + b2 + c2)(p2 + q2 + r2) + 2(ab+ bc+ ca)(pq + qr + rp) ≥ 0.

The inequality is trivially satisfied if a2 + b2 + c2 = 0 or p2 + q2 + r2 = 0. Let us
consider the case when neither is zero. The inequality is separately homogeneous
in {a, b, c} and {p, q, r}. Thus, WLOG, we can assume a2 + b2 + c2 = 1 and
p2 + q2 + r2 = 1.
Let us find the extrema of ab + bc + ca under the constraint a2 + b2 + c2 = 1
using Lagrange multipliers. The three resulting equations obtained in addition
to the constraint are

b+ c− 2λa = 0

c+ a− 2λb = 0

a+ b− 2λc = 0,

where λ is the Lagrange multiplier. Adding the three equations, we have

(a+ b+ c)(1− λ) = 0.

Thus, either a+ b+ c = 0 or λ = 1.
λ = 1 results in a = b = c. The constraint implies a = b = c = ± 1√

3
. Thus,

ab+ bc+ ca = 1 for this case. If a+ b+ c = 0,

ab+ bc+ ca =
(a+ b+ c)2 − (a2 + b2 + c2)

2
= −1

2
.

The exact same analysis applies to {p, q, r}.
Thus, the LHS can be written as 1 + 2uv where u ∈

[
− 1

2 , 1
]

and v ∈
[
− 1

2 , 1
]
.
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This expression will take minimum value when one of {u, v} is most negative
(takes value − 1

2 ) and the other is most positive (takes value +1). Thus the

minimum value of the LHS is 1 + 2
(
− 1

2

)
(1) = 0. �

Acknowledgment (by Alexander Bogomolny)
The problem above was kindly posted to the CutTheKnotMath faceboo page
by Daniel Sitaru, with a solution by Ravi Prakash. Originally, the problem was
published by Daniel at the Romanian Mathematical Magazine . Solution 2 is
by Amit Itagi.

197. An Inequality in Triangle, with Sides and Medians III

In any ∆ABC, with the side lengths a, b, c and then medians ma,mb,mc,∑∑∑
cycl

(mb +mc −ma)3

ma

≥
3

4
(a2 + b2 + c2).

Proposed by Daniel Sitaru

Solution 1 (by Soumitra Mandal).∑
cycl

(mb +mc −ma)2 = 3
∑
cycl

m2
a − 2

∑
cycl

mamb

=
9

4

∑
cycl

a2 − 2
∑
cycl

mamb ≥
9

4

∑
cycl

a2 − 1

2

∑
cycl

(2a2 + bc)

≥ 9

4

∑
cycl

a2 − 3

2

∑
cycl

a2 =
3

4

∑
cycl

a2.

Again, ∑
cycl

ma(mb +mb −ma) = 2
∑
cycl

mamb −
∑
cycl

m2
a

≤ 1

2

∑
cycl

(2a2 + bc)− 3

4

∑
cycl

a2 ≤ 3

2

∑
cycl

a2 =
3

4

∑
cycl

a2.

It follows, by Bergström’s inequality, that∑
cycl

(mb +mc −ma)3

ma
=
∑
cycl

(mb +mc −ma)4

ma(mb +mc −ma)

≥
(
∑
cycl(mb +mc −ma)2∑

cyclma(mb +mc −ma)
≥

(
3
4 (a2 + b2 + c2)

)2

3
4 (a2 + b2 + c2)

=
3

4
(a2 + b2 + c2).

�
Solution 2 (by Soumava Chakraborty).

Let mb + mc − ma = x,mc + ma − mb = y,ma + mb − mc = z. Note that
x, y, z > 0,ma +mb +mc = x+ y+ z,ma = y+z

2 ,mb = z+x
2 ,mc = x+y

2 . We thus
have:

LHS =
2x3

y + z
+

2y3

z + x
+

2z3

x+ y
.

while

RHS =
3

2

∑
cycl

a2 =
∑
cycl

m2
a
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=
1

4

∑
cycl

(y + z)2 =
1

2

(∑
cycl

x2 +
∑
cycl

xy

)
such that the required inequality reduces to∑

cycl

x3

y + z
≥ 2

4

(∑
cycl

x2 +
∑
cycl

xy

)
Note that LHS =

∑
cycl

x
y+z · x

2. WLOG, x ≥ y ≥ z, then

x+ y ≥ x+ z ≥ y + z, implying x
y+z ≥

y
z+x ≥

z
x+y . Now we are in a position to

apply Chebysev’s inequality :

LHS ≥ 1

3

∑
cycl

x

y + z
·
∑
cycl

x2

=
1

3

∑
cycl

x2

xy + zx
·
∑
cycl

x2 ≥ 1

3
·

(
∑
cycl x)2

2
∑
cycl xy

·
∑
cycl

x2.

Thus, suffice it to prove that

(
∑
cycl x

2 + 2
∑
cycl xy)(

∑
cycl x

2)

6
∑
cycl xy

≥ 1

4

(∑
cycl

x2 +
∑
cycl

xy

)
.

With u =
∑
cycl x

2 and v =
∑
cycl xy, the inequality rewrites as

(u+ 2v)u

3v
≥ u+ v

2
.

This is successively equivalent to

⇔ 2u2 + 2uv ≥ 3uv + 3v2 ⇔ 2u2 + uv − 3v2 ≥ 0

⇔ (u− v)(2u+ 3v) ≥ 0

because, as we know, u =
∑
cycl x

2 ≥
∑
cycl xy = v. �

Solution 3 (by Alexander Bogomolny).
If we take into account the well known expressions for the medians, we shall
reduce the inequality to∑

cycl

(mb +mc −ma)3

ma
≥ m2

a +m2
b +m2

c .

For simplicity, let’s use x, y, z for ma,mb,mc. Thus the inequality to prove
becomes ∑

cycl

(x+ y − z)3

z
≥ x2 + y2 + z2.

From here we follow in the footsteps of Solution 1. On one hand,∑
cycl

(x+ y − z)2 = 3
∑
cycl

x2 − 2
∑
cycl

xy ≥
∑
cycl

x2.

On the other hand,∑
cycl

z(x+ y − z) = 2
∑
cycl

xy −
∑
cycl

x2 ≤
∑
cycl

x2.
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It follows by Bergström inequality that∑
cycl

(x+ y − z)3

z
=
∑
cycl

(x+ y − z)4

z(x+ y − z)

≥
(
∑
cycl(x+ y − z)2)2∑
cycl z(x+ y − z)

≥
(
∑
cycl x

2)2∑
cycl x

2
=
∑
cycl

x2.

�
Acknowledgment (by Alexander Bogomolny)

CutTheKnotMath facebook page . The problem was originally published at
the Romanian Mathematical Magazine . Solution 1 is by Soumitra Mandal ;
Solution 2 is by Soumava Chakraborty.

198. An Inequality with Just Two Variable And an Integer

Prove that, for real a, b > 0 and integer n,( a
bn

+
b

an

)(an
b

+
bn

a

)(an
bn

+
b

a

)( bn
an

+
a

b

)
≥

(√(a
b

)n−1

+

√( b
a

)n−1
)

Proposed by Daniel Sitaru

Solution (by Daniel Sitaru).
From means the inequality

(1)
a

bn
+

b

an
≥ 2

√
ab

anbn
.

(2)
an

bn
+
b

a
≥ 2

√
anb

bna
.

(3)
bn

an
+
a

b
≥ 2

√
bn

anb

By multiplying the relationship (1), (2), (3):

(4)
( a
bn

+
b

an

)(an
bn

+
b

a

)( bn
an

+
a

b

)
≥ 8√

an−1 · bn−1
.

We prove that

(5)
an

b
+
bn

a
≥ an−1 + bn−1.

an+1 + bn+1 ≥ anb+ abn

an(a− b)− bn(a− b) ≥ 0

(a− b)(an − bn) ≥ 0

(a− b)2(an−1 + an−2b+ ·+ bn−1) ≥ 0,

which is true. Now multiply the relationships (4), (5)(an
b

+
bn

a

)( a
bn

+
b

an

)(an
bn

+
b

a

)( bn
an

+
a

b

)
≥ 8(an−1 + bn−1)√

an−1 · bn−1

= 8

(√(a
b

)n−1

+

√( b
a

)n−1
)
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�
Acknowledgment (by Alexander Bogomolny)

This problem, along with a solution, was kindly communicated to me by Daniel
Sitaru. Daniel has earlier published the problem at Romanian Mathematical
Magazine .

199. An Universal Inequality for Cevians

Let in ∆, p = min{a, b, c}, q = max{a, b, c};M ∈ BC,N ∈ AC,P ∈ AB.
Prove that:

3 + 9pqAM2 +BN2 + CP2 ≤ (p+ q)(1AM + 1BM + 1CP )

Examples: For la, lb, lc the angle bisectors in ∆ABC,

3 + 9pql2a + l2b + l2c ≤ (p+ q)(1la + 1lb + 1lc).

For ma,mb,mc the medians in ∆ABC,

3 + 9pqm2a +m2b +m2c ≤ (p+ q)(1ma + 1mb + 1mc).

Proof.
Naturally, AM,BN,CP ∈ [p, q] so that (p−AM)(q −AM) ≤ 0, implying

pq − (p+ q)AM +AM2 ≤ 0,

which is the same as
pqAM2 + 1 ≤ p+ qAM.

Similar inequalities holds for BN and CP . Taking the sum of all three gives

3 + pq
∑
cyc

1AM2 ≤ (p+ q)
∑
cyc

1AM.

By the Harmonic Mean-Arithmetic Mean Inequality,

9
∑
cyc

AM2 ≤
∑
cyc

1AM2

such that
3 + 9pq

∑
cyc

AM2 ≤ 3 + pq
∑
cyc

1AM2.

By the transitivity of the relation of inequality,

3 + 9pqAM2 +BN2 + CP2 ≤ (p+ q)(1AM + 1BN + 1CP ).

Warning:
The above is a fallacy invented by Daniel Sitaru and Leo Giugiuc and posted
at the CutTheKnotMath facebook page . As a hint of what is wrong with
the proof, note that it would have been nice to mention the applicability of the
inequality to the altitudes ha, hb, hc. The omission was deliberate!
Another way to see that there is something wrong with the above is to consider
the most symmetric configuration of an equilateral triangle in which M,N,P
are the midpoints of the corresponding sides. �
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200. An Inequality in Integers

The following inequality, due (1979) to professor Radu Gologan has posted at the
CutTheKnotMath facebook page by Leo Giugiuc along with a solution by
Daniel Sitaru and Leonard Giugiuc. Radu Gologan is the Romanian team leader
for the IMO.
Let a and b be positive integers such that a

b <
√

7. Prove that a
b + 1

ab < sqrt7.
Solution.
a2 < 7b2 so that a2 ≤ 7b2 − 1. In Z7, a

2 ∈ {0, 1, 2, 4}, making a2 = 7b2 − 1
impossible. Thus, necessarily, a2 ≤ 7b2−2. But then, again, a2 = 7b2−2 is also
impossible such that, in fact a2 ≤ 7b3 − 3, or a ≤

√
7b2 − 3.

Introduce function f(x) = x + 1
x which is monotone increasing for x ≥ 1. It

follows that (√
7b2 − 3 +

1√
7b2 − 3

)2

≥
(
a+

1

a

)2

which is equivalent to

7b2 − 1 +
1

7b2 − 3
≥
(
a+

1

a

)2

.

In addition, since b is a positive integer, 1 > 1
7b2−3 , such that 7b2 >

(
a+ 1

a

)2

.

In other words, 7 >
(
a
b + 1

ab

)2

, i.e., a
b + 1

ab <
√

7, as required. �

Its nice to be important but more important its to be nice.

At this paper works a TEAM.

This is RMM TEAM.

To be continued!

Daniel Sitaru
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