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1. Let ABC be an acute triangle. Prove that
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Proof.
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Equality holds if and only if the triangle is equilateral.

O
Note.
From the above proof the condition of acute-angled triangle is not necessary.
Remark.
In the same way it can be proposed:
2. In AABC
mg me Mme 2R
—+(cosB+cosC)+—:(cosC+cos A)+ —:(cos A4+cosB) < — —1
hq hy h. r
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We have

Mg Mg Mg Mg
Z h—a-(cos B+cosC) = Z h—a-(cos A+cos B+cos C—cos A) = Z I Z cos A—Z R cos A <
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where we ve used:

% ccos A > % (inequality 1.), Z cosA=1+ % < g (Euler’s inequality) and

a

4R
% < 3:— T, which follows from Cebyshev’s inequality:
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The triplets (mg, my, me) and (h—a, T hi) are reversed ordered, and E m, < 4R+r and E e =

1
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1 4R
wherefrom — < - g Mg Yy — < —-(4R+r)- 73+ !
r r

The equalzty holds if and only ’Lf the tmangle 18 equilateral.
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