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1. Let ABC be an acute triangle. Prove that∑√
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Proposed by George Apostolopoulos - Messolonghi - Greece

Proof.

Using CBS inequality we obtain(∑√
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where the last inequality follows from:

1) 1 + r
R ≤

3
2 ⇔ R ≥ 2r (Euler’s inequality).

2) p2+r2+4Rr
4R2 ≤ 9

4 ⇔ p2 ≤ 9R2 − 4Rr − r2 , true from Gerretsen’s inequality

p2 ≤ 4R2 + 4Rr + 3r2 . It remains to prove that:

4R2+4Rr+3r2 ≤ 9R2−4Rr−r2 ⇔ 5R2−8Rr−4r2 ≥ 0⇔ (R−2r)(5R+2r) ≥ 0,

obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

Remark.

In the same way it can be proposed:

2. In ∆ABC ∑√
sinA cosB cosC ≤
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Proposed by Marin Chirciu

Proof.

Using CBS inequality we obtain(∑√
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where the last inequality follows from:

1) rp
2R2 ≤ 3

√
3

8 ⇔ p ≤ 3R2
√
3

4r , true from Mitrinović’s inequality p ≤ 3R
√
3

2 and
Euler’s inequality R ≥ 2r
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2) p2+r2−4R2

4R2 ≤ 3
4 ⇔ p2 ≤ 7R2 − r2 , true from Gerretsen’s inequality

p2 ≤ 4R2 + 4Rr + 3r2. It remains to prove that:

4R2 + 4Rr + 3r2 ≤ 7R2 − r2 ⇔ 3R2 − 4Rr − 4r2 ≥ 0⇔ (R− 2r)(3R+ 2r) ≥ 0

obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.
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