
SEVERAL WAYS TO DEVELOP AN INEQUALITY

MARIN CHIRCIU, DANIEL SITARU

Abstract. In this paper its presented a way to develop a given inequality.
After six different solutions we show how to build new refinements and gener-

alizations.

Main result:

Let a, b > 0. Prove that:

9 ≤
( 2ab

a + b
+
√
ab +

a + b

2

)(a + b

2ab
+

1
√
ab

+
2

a + b

)
≤ 5 + 2

(a
b
+

b

a

)
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Solution 1 by Soumava Chakraborty - Kolkata - India.( 2ab

a+ b
+
√
ab+

a+ b

2

)(a+ b

2ab
+

1√
ab

+
2

a+ b

)
= 3+

4
√
a

a+ b
+
a+ b√

ab
+

4ab

(a+ b)2
+
(a+ b)2

4ab
≤

≤ 3 + 2 +
a+ b√

ab
+ 1 +

(a+ b)2

4ab
= 6 +

a+ b√
ab

+
(a+ b)2

4ab
.

It suffice to prove that: 6 +
a+ b√

ab
+

(a+ b)2

4ab
≤ 5 + 2

(a
b
+

b

a

)

(1) which is equivalent to: 1 +
a+ b√

ab
+

(a+ b)2

4ab
≤ 2(a2 + b2)

ab

Now, by the GM-HM inequality,
√
ab ≥ 2ab

a+ b
, hence

a+ b√
ab
≤ (a+ b)2

2ab

It follows that:

(2)
a+ b√

ab
+ 1 +

(a+ b)2

4ab
≤ 1 +

3(a+ b)2

4ab

1 and 1 shows that the problem will be solved if we manage to prove

3(a+ b)2 + 4ab

4ab
≤ 2(a2 + b2)

ab
.

This is equivalent to 3a2 + 3b2 + 10ab ≤ 8a2 + 8b2, or

5a2 + 5b2 − 10ab ≥ 0, which is simply 5(a− b)2 ≥ 0

�
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Solution 2 by Kevin Soto Palacios - Huarmey - Peru.

We employ the obvious
2
√
ab

a+ b
≤ 1 and

4ab

(a+ b)2
≤ 1 to obtain:( 2ab

a+ b
+
√
ab+

a+ b

2

)(a+ b

2ab
+

1√
ab

+
2

a+ b

)
≤ 6 +

3(a+ b)2

4ab
.

Suffice to prove that 6 +
3(a+ b)2

4ab
≤ 5 + 2

(a
b
+

b

a

)
.

Now note that: 1 +
3(a+ b)2

4ab
≤ 5

2
+

3

4

(a
b
+

b

a

)
, because

5

2
≤ 5

4

(a
b
+

b

a

)
.

�

Solution 3 by Soumava Chakraborty - Kolkata - India.

Using the AM-GM inequality,
a+ b

2
≥
√
ab and

2

a+ b
≤ 1√

ab( 2ab

a+ b
+
√
ab+

a+ b

2

)(a+ b

2ab
+

1√
ab

+
2

a+ b

)
≤
(√

ab+
√
ab+

a+ b

2

)(a+ b

2ab
+

1√
ab

+
1√
ab

)
=
(
2
√
ab+

a+ b

2

)(a+ b

2ab
+

2√
ab

)
=

a+ b√
ab

+ 4 +
(a+ b)2

4ab
+

a+ b√
ab

=

= 4 +
(a+ b)2

4ab
+

2(a+ b)√
ab

Thus, suffice it to prove that: 4 +
(a+ b)2

4ab
+

2(a+ b)√
ab

≤ 5 + 2
(a
b
+

b

a

)
.

which is equivalent to:

(a+ b)2

4ab
+

2(a+ b)√
ab

≤ 1 + 2
a2 + b2

ab
=

2a2 + 2b2 + ab

ab
.

Now, from
1√
ab
≤ a+ b

2ab
we get

2(a+ b)√
ab

≤ (a+ b)2

ab
, implying

(a+ b)2

4ab
+

2(a+ b)√
ab

≤ (a+ b)2

4ab
+

(a+ b)2

a
=

5(a+ b)2

4ab
.

Thus, suffice it to prove
5

4
· (a+ b)2

ab
≤ 2a2 + 2b2 + ab

ab
, i.e., 5a2+5b2+10ab ≤ 8a2+8b2+4ab

which reduces to 3(a− b)2 ≥ 0.

�

Solution 4 by Abdallah El Farisi - Bechar - Algerie.

Let: A =
( 2ab

a+ b
+
√
ab+

a+ b

2

)(a+ b

2ab
+

1√
ab

+
2

a+ b

)
=

=
( 2ab

a+ b
+
√
ab+

a+ b

2

)( 2

a+ b
+

1√
ab

+
a+ b

2ab

)
=

=
1

ab

( 2ab

a+ b
+
√
ab+

a+ b

2

)2
≤ 1

ab
(
√
ab+ a+ b)2 =

=
1

ab

(
ab+ 2

√
ab(a+ b) + (a+ b)2

)
≤ 1

ab

(
ab+ 2(a+ b)2

)
=

=
1

ab

(
5ab+ 2(a2 + b2)

)
= 5 + 2

(a
b
+

b

a

)
.
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Solution 5 by Soumava Chakrabory - Kolkata - India.

Define =
2ab

a+ b
, y =

√
ab, z =

a+ b

2
. We have x ≤ y ≤ z and y2 = xz.

( 2ab

a+ b
+
√
ab+

a+ b

2

)(a+ b

2ab
+

1√
ab

+
2

a+ b

)
=

(∑
cycl

x

)(∑
cycl

1

x

)
=

=
(
∑

cycl x(xy + yz + zx)

xyz
=

(
∑

cycl x)(xy + yz + y2)

xyz
=

(x+ y + z)2

xz
=

(x+ y + z)2

y2

5 + 2
(a
b
+

b

a

)
=

2a2 + 2b2 + 5ab

ab
=

2(a+ b)2 + ab

ab
= 1 +

8z2

y2
.

The required inequality is equivalent to
(x+ y + z)2

y2
≤ 1 +

8z2

y2
which is

(x+ y + z)2 − y2 ≤ 8z2, or, (x+ 2y + z)(x+ z) ≤ 8z2.

Since x ≤ y ≤ z, x+ 2y + z ≤ 4z and x+ z ≤ 2z, which shows that, indeed,

(x+ 2y + z)(x+ z) ≤ 8z2.

�

Solution 6 by Daniel Sitaru - Romania.

We know that, for positive a, b, c :
2ab

a+ b
≤
√
ab ≤ a+ b

2
.

We’ll use Schweitzer’s inequality:(
n∑

k=1

xk

)(
n∑

k=1

1

xk

)
≤ (m+M)2n2

4mM
,

where x1, . . . , xn ∈ [m,M ],m > 0.

with n = 3,m = x1 =
2ab

a+ b
, x2 =

√
ab, and x3 =

a+ b

2
= M , we directly get

A =
( 2ab

a+ b
+
√
ab+

a+ b

2

)(a+ b

2ab
+

1√
ab

+
2

a+ b

)
≤ 9

( 2ab
a+b +

a+b
2

)2
4ab

=

=
9

4ab

[( 2ab

a+ b

)2
+ 2ab+

(a+ b

2

)2]
≤ 9

4ab

[
(
√
ab)2 + 2ab+

(a+ b

2

)2]
=

=
9

4ab

[
3ab+

(a+ b

2

)2]
=

9

16ab

[
14ab+ (a2 + b2)

]
=

63

8
+

9

16

(a
b
+

b

a

)
.

Now, 1 ≤ 1

2

(a
b
+

b

a

)
. It then follows that

23

8
≤ 23

16

(a
b
+

b

a

)
and, subsequently,

63

8
+

9

16

(a
b
+

b

a

)
≤ 40

8
+

32

16

(a
b
+

b

a

)
= 5 + 2

(a
b
+

b

a

)
.

In all solutions first inequality its proved by AM-GM: E = (x+y+z)
( 1
x
+
1

y
+
1

z

)
≥ 9

This double inequality can be developed.

�
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Extension 1 (Marin Chirciu):
Let a, b > 0. Prove that:

9 ≤
( 2ab

a + b
+
√
ab+

a + b

2

)(a + b

2ab
+

1
√
ab

+
2

a + b

)
≤ 9−2n+n

(a
b
+

b

a

)
, n ≥

3

4
.

Proof.

We denote
2ab

a+ b
= x,

√
ab = y,

a+ b

2
= z and E =

( 2ab

a+ b
+
√
ab+

a+ b

2

)(a+ b

2ab
+

1√
ab

+
2

a+ b

)
.

(1) We have E = (x+ y + z)
( 1
x
+

1

y
+

1

z

)
= 3+

(x
y
+

y

x

)
+
(y
z
+

z

y

)
+
( z
x
+

x

z

)
(2)

We prove that:
(x
y
+
y

x

)
≤ 1+

(a+ b)2

4ab
,
(y
z
+
z

y

)
≤ 1+

(a+ b)2

4ab
,
( z
x
+
x

z

)
=

(a+ b)4 + 16a2b2

4ab(a+ b)2

Indeed:(x
y
+

y

x

)
=

x2 + y2

xy
=

( 2ab
a+b )

2 + ab
2ab
a+b ·

√
ab
≤

( 2ab
a+b )

2 + ab
2ab
a+b ·

2ab
a+b

= 1 +
(a+ b)2

4ab

where the last inequality follows from means inequality
√
ab ≥ 2ab

a+ b
.(y

z
+

z

y

)
=

y2 + z2

yz
=

ab+ (a+b
2 )2

√
ab · a+b

2

≤
ab+ (a+b

2 )2

2ab
a+b ·

a+b
2

= 1 +
(a+ b)2

4ab

where the last inequality follows from means inequality
√
ab ≥ 2ab

a+ b
.( z

x
+

x

z

)
=

x2 + z2

xz
=

( 2ab
a+b )

2 + (a+b
2 )2

2ab
a+b ·

a+b
2

=
(a+ b)4 + 16a2b2

4ab(a+ b)2
.

Next, we look for an inequality having the form E ≤ k + n
(a
b
+

b

a

)
.

Taking into account 1 and 2 it remains to impose

3 +

[
1 +

(a+ b)2

4ab

]
+

[
1 +

(a+ b)2

4ab

]
+
(a+ b)4 + 16a2b2

4ab(a+ b)2
≤ k + n

(a
b
+

b

a

)
⇔

2 · (a+ b)2

4ab
+

(a+ b)4 + 16a2b2

4ab(a+ b)2
≤ x− 5 +

y(a2 + b2)

ab
⇔

3(a+ b)4 + 16a2b2 ≤ 4(x− 5)ab(a+ b)2 + 4y(a2 + b2)(a+ b)2 ⇔
(3)
(4n−3)a4+(4k+8n−32)a3b+(8k+8n−74)a2b2+(4k+8n−32)a3b+(4n−3)b4 ≥ 0

In Horner’s scheme we put the condition that 1 to be double root and we obtain:

16k + 32n− 144 = 0, 32k + 64n− 288 = 0, wherefrom k + 2n = 9

It follows that 3 can be written

(a− b)2
[
(4n− 3)a2 + (4k + 16n− 38)ab+ (16k + 36n− 143)b2

]
≥ 0⇔

(a− b)2
[
(4n− 3)a2 + (8n− 2)ab+ (4n− 3)b2

]
≥ 0.

Putting the condition that the right parenthesis to be positive we obtain 4n−3 ≥ 0.

Equality holds if and only if a = b.
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Obviously E = (x+ y + z)
( 1
x
+

1

y
+

1

z

)
≥ 9.

Remark.

We denote the arithmetic mean, the geometric mean, the harmonic mean,

respectively the squared mean with

Ma =
a+ b

2
,Mg =

√
ab,Mh =

2ab

a+ b
,Mp =

√
a2 + b2

2
.

Inequality 2a) is:

4 ≤ (Ma +Mg +Mh)
( 1

Ma
+

1

Mg
+

1

Mh

)
≤ 9− 2n+ n

(a
b
+

b

a

)
, where n ≥ 3

4

We will prove that 9 ≤ (x+y+z)
( 1
x
+
1

y
+
1

z

)
≤ 9−2n+n

(a
b
+
b

a

)
, where n ≥ 3

4
or n ≥ 5

4
, for

{x, y, z} ⊂ {Ma,Mg,Mh,Mp}.
�

Extension 2 (Marin Chirciu):

9 ≤
(
a + b

2
+
√
ab+

√
a2 + b2

2

)(
2

a + b
+

1
√
ab

+

√
2

a2 + b2

)
≤ 9−2n+n

(a
b
+

b

a

)
with n ≥

3

4
.

Proof.
{x, y, z} = {Ma,Mg,Mp}.

We denote
a+ b

2
= x,

√
ab = y,

√
a2 + b2

2
= z and

E =

(
a+ b

2
+
√
ab+

√
a2 + b2

2

)(
2

a+ b
+

1√
ab

+

√
2

a2 + b2

)
.

(1) We have E = (x+ y + z)
( 1
x
+

1

y
+

1

z

)
= 3+

(x
y
+

y

x

)
+
(y
z
+

z

y

)
+
( z
x
+

x

z

)
(2)

We prove that
(x
y
+
y

x

)
≤ 1+

(a+ b)2

4ab
,
(y
z
+
z

y

)
≤ 1+

a2 + b2

2ab
,
( z
x
+
x

z

)
≤ 1+

2(a2 + b2)

(a+ b)2

Indeed:(x
y
+

y

x

)
=

x2 + y2

xy
=

(a+b
2 )2 + ab

a+b
2 ·
√
ab
≤

(a+b
2 ) + ab

a+b
2 ·

2ab
a+b

=
(a+b

2 ) + ab

ab
= 1 +

(a+ b)2

4ab

where the last inequality follows from the means inequality
√
ab ≥ 2ab

a+ b
.(y

z
+

z

y

)
=

y2 + z2

yz
=

ab+ a2+b2

2
√
ab ·

√
a2+b2

2

≤
ab+ a2+b2

2
2ab
a+b ·

a+b
2

=
ab+ a2+b2

2

ab
= 1 +

a2 + b2

2ab

where the last inequality follows from
√
ab ≥ 2ab

a+ b
and

√
a2 + b2

2
≥ a+ b

2
.
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( z
x
+

x

z

)
=

x2 + z2

xz
=

(a+b
2 )2 + a2+b2

2

a+b
2 ·

√
a2+b2

2

≤
(a+b

2 )2 + a2+b2

2
a+b
2 ·

a+b
2

= 1 +
2(a2 + b2)

(a+ b)2

Next, we look for an inequality having the form E ≤ k + n
(a
b
+

b

a

)
.

Taking into account 1 and 2 it remains to impose

3 +

[
1 +

(a+ b)2

4ab

]
+

[
1 +

a2 + b2

2ab

]
+

[
1 +

2(a2 + b2)

(a+ b)2

]
≤ k + n

(a
b
+

b

a

)
⇔

(a+ b)2

4ab
+

a2 + b2

2ab
+

2(a2 + b2)

(a+ b)2
≤ (k − 6) +

n(a2 + b2)

ab
⇔

(a+b)4+2(a2+b2)(a+b)2+8ab(a2+b2) ≤ 4(k−6)ab(a+b)2+4n(a2+b2)(a+b)2 ⇔
(3)
(4n−3)a4+(4k+8n−40)a3b+(8k+8n−58)a2b2+(4k+8n−40)a3b+(4n−3)b4 ≥ 0

In Horner’s scheme we put the condition that 1 to be double root and we obtain:

16k+32n−144 = 0, 32k+64n−288 = 0, wherefrom k+2n = 9. It follows that 3 can be written

(a− b)2
[
(4n− 3)a2 + (4k + 16n− 46)ab+ (16k + 36n− 147)b2

]
≥ 0⇔

(a− b)2
[
(4n− 3)a2 + (8n− 10)ab+ (4n− 3)b2

]
≥ 0

Putting the condition that the right parenthesis to be positive we obtain 4n− 3 ≥ 0

The equality holds if and only if a = b.

Obviously E = (x+ y + z)
( 1
x
+

1

y
+

1

z

)
≥ 9

�

Extension 3 (Marin Chirciu):

9 ≤
(a+ b

2
+

2ab

a+ b
+

√
a2 + b2

2

)( 2

a+ b
+
a+ b

2ab
+

√
2

a2 + b2

)
≤ 9−2n+n

(a
b
+
b

a

)
, with n ≥ 3

4

Proof.
{x, y, z} = {Ma,Mh,Mp}.

We denote
a+ b

2
= x,

2ab

a+ b
= y,

√
a2 + b2

2
= z and

E =
(a+ b

2
+

2ab

a+ b
+

√
a2 + b2

2

)( 2

a+ b
+

a+ b

2ab
+

√
2

a2 + b2

)
(1) We have E = (x+ y + z)

( 1
x
+

1

y
+

1

z

)
= 3+

(x
y
+

y

x

)
+
(y
z
+

z

y

)
+
( z
x
+

x

z

)
We prove that

(x
y
+

y

x

)
=

(a+ b)2

4ab
+

4ab

(a+ b)2
,
(y
z
+

z

y

)
≤ (a+ b)2

2ab
+

4ab

(a+ b)2
,

(2)
( z
x
+

x

z

)
≤ 1 +

2(a2 + b2)

(a+ b)2

Indeed:(x
y
+

y

x

)
=

x2 + y2

xy
=

(a+b
2 )2 + ( 2ab

a+b )
2

a+b
2 ·

2ab
a+b

=
(a+ b)2

4ab
+

4ab

(a+ b)2
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(y
z
+

z

y

)
=

y2 + z2

yz
=

( 2ab
a+b )

2 + a2+b2

2

2ab
a+b ·

√
a2+b2

2

≤
( 2ab
a+b )

2 + a2+b2

2
2ab
a+b ·

a+b
2

=

=
( 2ab
a+b )

2 + a2+b2

2

ab
=

4ab

(a+ b)2
+

a2 + b2

2ab

where the last inequality follows from

√
a2 + b2

2
≥ a+ b

2
.

( z
x
+

x

z

)
=

x2 + z2

xz
=

(a+b
2 )2 + a2+b2

2

a+b
2 ·

√
a2+b2

2

≤
(a+b

2 )2 + a2+b2

2
a+b
2 ·

a+b
2

= 1 +
2(a2 + b2)

(a+ b)2

Next, we are looking for an inequality having the form E ≤ k + n
(a
b
+

b

a

)
Taking into account 1 and 2 it remains to impose

3+

[
(a+ b)2

4ab
+

4ab

(a+ b)2

]
+

[
4ab

(a+ b)2
+
a2 + b2

2ab

]
+

[
1+

2(a2 + b2)

(a+ b)2

]
≤ k+n

(a
b
+
b

a

)
⇔

(a+ b)2

4ab
+

8ab

(a+ b)2
+

a2 + b2

2ab
+

2(a2 + b2)

(a+ b)2
≤ (k − 4) +

n(a2 + b2)

ab
⇔

(a+b)4+32a2b2+2(a2+b2)(a+b)2+8ab(a2+b2) ≤ 4(k−4)ab(a+b)2+4n(a2+b2)(a+b)2

(3)
(4n−3)a4+(4k+8n−32)a3b+(8k+8n−74)a2b2+(4k+8n−32)a3b+(4n−3)b4 ≥ 0

In Horner’s scheme we put the condition that 1 to be double root and we obtain:

16k + 32n− 144 = 0, 32k + 64n− 288 = 0, wherefrom k + 2n = 9

It follows that 3 can be written

(a− b)2
[
(4n− 3)a2 + (4k + 16n− 38)ab+ (16k + 36n− 147)b2

]
≥ 0⇔

(a− b)2
[
(4n− 3)a2 + (8n− 2)ab+ (4n− 3)b2

]
≥ 0.

Putting the condition that the right parenthesis to positive we obtain 4n− 3 ≥ 0

The equality holds if and only if a = b.

Obviously E = (x+ y + z)
( 1
x
+

1

y
+

1

z

)
≥ 9

�

Extension 4 (Marin Chirciu):

9 ≤
(
√
ab+

2ab

a + b
+

√
a2 + b2

2

)( 1
√
ab

+
a + b

2ab
+

√
2

a2 + b2

)
≤ 9−2n+n

(a
b
+

b

a

)
with n ≥

5

4
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Proof.
{x, y, z} = {Mg,Mh,Mp}.

We denote
√
ab = x,

2ab

a+ b
= y,

√
a2 + b2

2
= z and

E =
(√

ab+
2ab

a+ b
+

√
a2 + b2

2

)( 1√
ab

+
a+ b

2ab
+

√
2

a2 + b2

)
(1) We have E = (x+ y + z)

( 1
x
+

1

y
+

1

z

)
= 3+

(x
y
+

y

x

)
+
(y
z
+

z

y

)
+
( z
x
+

x

z

)
(2)

We prove that
(x
y
+
y

x

)
≤ 1+

(a+ b)2

4ab
,
(y
z
+
z

y

)
≤ (a+ b)2

2ab
+

4ab

(a+ b)2
,
( z
x
+
x

z

)
≤ 1+

a2 + b2

2ab

Indeed:(x
y
+

y

x

)
=

x2 + y2

xy
=

ab+ ( 2ab
a+b )

2

√
ab · 2ab

a+b

≤
ab+ ( 2ab

a+b )
2

2ab
a+b ·

2ab
a+b

= 1 +
(a+ b)2

4ab

where the inequality follows from
√
ab ≥ 2ab

a+ b
.(y

z
+
z

y

)
=

y2 + z2

yz
=

( 2ab
a+b ) +

a2+b2

2

2ab
a+b ·

√
a2+b2

2

≤
( 2ab
a+b )

2 + a2+b2

2
2ab
a+b ·

a+b
2

=
( 2ab
a+b )

2 + a2+b2

2

ab
=

4ab

(a+ b)2
+
a2 + b2

2ab

where the inequality follows from

√
a2 + b2

2
≥ a+ b

2( z
x
+

x

z

)
=

x2 + z2

xz
=

ab+ a2+b2

2√
ab · a2+b2

2

≤
ab+ a2+b2

2
2ab
a+b ·

a+b
2

= 1 +
a2 + b2

2ab

where the inequality follows form

√
a2 + b2

2
≥ a+ b

2
and
√
ab ≥ 2ab

a+ b
.

Next, we are looking for an inequality having the form E ≤ k + n
(a
b
+

b

a

)
.

Taking into account 1 and 2 it remains to impose

3 +

[
1 +

(a+ b)2

4ab

]
+

[
(a+ b)2

2ab
+

4ab

(a+ b)2

]
+

[
1 +

a2 + b2

2ab

]
≤ k + n

(a
b
+

b

a

)
⇔

(a+ b)2

4ab
+

4ab

(a+ b)2
+

a2 + b2

ab
≤ (k − 5) +

n(a2 + b2)

ab
⇔

(a+ b)4 + 16a2b2 + 4(a2 + b2)(a+ b)2 ≤ 4(k − 5)ab(a+ b)5 + 4n(a2 + b2)(a+ b)2

(3)
(4n−5)a4+(4k+8n−32)a3b+(8k+8n−70)a2b2+(4k+8n−32)a3b+(4n−5)b4 ≥ 0

In Horner’s scheme we put the condition that 1 to be double root and we obtain:

16k+32n−144 = 0, 32k+64n−288 = 0, wherefrom k+2n = 9. It follows that 3 can be written

(a− b)2
[
(4n− 5)a2 + (4k + 16n− 42)ab+ (16k + 36n− 149)b2

]
≥ 0⇔

(a− b)2
[
(4n− 5)a2 + (8n− 6)ab+ (4n− 5)b2

]
≥ 0.

Putting the condition the the right parenthesis to be positive we obtain 4n− 5 ≥ 0

The equality holds if and only if a = b.
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Obviously E = (x+ y + z)
( 1
x
+

1

y
+

1

z

)
≥ 9.

�
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