

SOLUTION

INEQUALITY IN TRIANGLE - 413

ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In ΔABC

$$\left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c} \right)^3 \geq \frac{27(a+b)(b+c)(c+a)}{8abc}$$

Proposed by Abdullayev - Baku - Azerbaidian

Remark.

The inequality can be strengthened:

2. In ΔABC

$$\left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c} \right)^3 \geq \frac{2p^2}{Rr}$$

Marin Chirciu - Romania

Proof.

We prove that following Lemma.

Lemma 1.

3. In ΔABC

$$\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c} \geq \frac{p^2 + r^2 - 2Rr}{4Rr}.$$

Proof.

Using Tereşin's inequality $m_a \geq \frac{b^2 + c^2}{4R}$, formula $h_a = \frac{bc}{2R}$ and the known

inequality in triangle $\sum \frac{b^2 + c^2}{bc} = \frac{p^2 + r^2 - 2Rr}{2Rr}$, we obtain:

$$\sum \frac{m_a}{h_a} \geq \sum \frac{\frac{b^2 + c^2}{4R}}{\frac{bc}{2R}} = \frac{1}{2} \sum \frac{b^2 + c^2}{bc} = \frac{p^2 + r^2 - 2Rr}{4Rr}$$

Equality holds if and only if the triangle is equilateral.

□

□

Remark.

We can write the inequalities:

4. In ΔABC

$$\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c} \geq \frac{p^2 + r^2 - 2Rr}{4Rr} \geq \frac{7R - 2r}{2R} \geq 3.$$

Proof.

The first inequality is **Lemma 1**, the second inequality follows from Gerretsen's inequality $p^2 \geq 16Rr - 5r^2$, and the third inequality follows from Euler's inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

□

Lemma 2.**5. In ΔABC**

$$\left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c} \right)^2 \geq \frac{2p^2}{3Rr}$$

Proof.

Using **Lemma 1**, is enough to prove that: $\left(\frac{p^2 + r^2 - 2Rr}{4Rr} \right)^2 \geq \frac{2p^2}{3Rr} \Leftrightarrow 3p^4 + p^2(6r^2 - 44Rr) + 12R^2r^2 - 12Rr^3 + 3r^4 \geq 0 \Leftrightarrow p^2(3p^2 + 6r^2 - 44Rr) + 3r^2(2R - r)^2 \geq 0$

□

We distinguish the cases:

- 1) If $3p^2 + 6r^2 - 44Rr \geq 0$, the inequality is obvious.
- 2) If $3p^2 + 6r^2 - 44Rr < 0$, inequality we can rewrite:

$p^2(44Rr - 6r^2 - 3p^2) \leq 3r^2(2R - r)^2$, true from Gerretsen's inequality:

$$\begin{aligned} (4R^2 + 4Rr + 3r^2) [44Rr - 6r^2 - 3(16Rr - 5r^2)] &\leq 3r^2(2R - r)^2 \Leftrightarrow \\ \Leftrightarrow 4R^3 - 2R^2r - 9Rr^2 - 6r^3 &\geq 0 \Leftrightarrow (R - 2r)(4R^2 + 6Rr + 3r^2) \geq 0 \end{aligned}$$

obviously from Euler's inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

Remark 2.

We can rewrite the inequalities:

6. In ΔABC

$$\left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c} \right)^2 \geq \frac{2p^2}{3Rr} \geq \frac{9(a+b)(b+c)(c+a)}{8abc} \geq 9.$$

Proof.

First inequality is Lemma 2.

Let's prove the second inequality.

Using the known identities in triangle: $(a+b)(b+c)(c+a) = 2p(p^2 + r^2 + 2Rr)$

and $abc = 4Rrp$, the second inequality:

$$\frac{2p^2}{3Rr} \geq \frac{9 \cdot 2p(p^2 + r^2 + 2Rr)}{8 \cdot 4Rrp} \Leftrightarrow 32p^2 \geq 27(p^2 + r^2 + 2Rr) \Leftrightarrow 5p^2 \geq 27(r^2 + 2Rr)$$

which follows from Gerretsen's inequality: $p^2 \geq 16Rr - 5r^2$ and Euler's inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

□

The third inequality is the well known inequality $(a+b)(b+c)(c+a) \geq 8abc$ (Cesaro)

We've obtained a strengthened inequality in triangle $\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c} \geq 3$.

$$\text{Let's pass to solving inequality 2: } \left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c} \right)^3 \geq \frac{2p^2}{Rr}$$

Base on Lemma 2 and the the last inequality from Remark 1 we obtain:

$$\left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c} \right)^3 = \left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c} \right)^2 \cdot \left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c} \right) \geq \frac{2p^2}{3Rr} \cdot 3 = \frac{2p^2}{Rr}$$

Equality holds if and only if the triangle is equilateral.

Remark 3.

Inequality 2 is stronger then inequality 1:

7. In ΔABC

$$\left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c} \right)^3 \geq \frac{2p^2}{Rr} \geq \frac{27(a+b)(b+c)(c+a)}{8abc}$$

Proof.

The first inequality is 6.

Let's prove the second inequality.

Using the known identities in triangle: $(a+b)(b+c)(c+a) = 2p(p^2 + r^2 + 2Rr)$

and $abc = 4Rrp$, the second inequality:

$$\frac{2p^2}{Rr} \geq \frac{27 \cdot 2p(p^2 + r^2 + 2Rr)}{8 \cdot 4Rrp} \Leftrightarrow 32p^2 \geq 27(p^2 + r^2 + 2Rr) \Leftrightarrow 5p^2 \geq 27(r^2 + 2Rr)$$

which follows from Gerretsen's inequality: $p^2 \geq 16Rr - 5r^2$ and Euler's inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

□

Remark 4.

We can write the inequalities:

8. In ΔABC

$$\left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c} \right)^3 \geq \frac{2p^2}{Rr} \geq \frac{27(a+b)(b+c)(c+a)}{8abc} \geq 27$$

Proof.

See **7** and Cesaro's inequality $(a+b)(b+c)(c+a) \geq 8abc$

□

Remark 5.

Inequality **2** can also be strengthened:

9. In ΔABC

$$\left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c}\right)^3 \geq \frac{p^2}{3Rr} \left(7 - \frac{2r}{R}\right)$$

Proof.

Base on **Lemma 2** and on the second inequality from **Remark 1** we obtain:

$$\left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c}\right)^3 = \left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c}\right)^2 \cdot \left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c}\right) \geq \frac{2p^2}{3Rr} \cdot \frac{7R - 2r}{2R} = \frac{p^2}{3Rr} \left(7 - \frac{2r}{R}\right)$$

Equality holds if and only if the triangle is equilateral.

□

Remark 6.

Inequality **9.** is stronger than inequality **2**.

10. In ΔABC

$$\left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c}\right)^3 \geq \frac{p^2}{3Rr} \left(7 - \frac{2r}{R}\right) \geq \frac{2p^2}{Rr}$$

Proof.

See inequality **9.** and Euler's inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

□

Remark 7.

We can write the inequalities:

11. In ΔABC

$$\left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c}\right)^3 \geq \frac{p^2}{3Rr} \left(7 - \frac{2r}{R}\right) \geq \frac{2p^2}{Rr} \geq \frac{27(a+b)(b+c)(c+a)}{8abc} \geq 27.$$

Proof.

See **10.** and **8.**

Equality holds if and only if the triangle is equilateral.

□

We've obtained again a strengthening of the well known inequality in triangle

$$\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c} \geq 3$$

Finally we can propose a development of inequality 2.:

12. In ΔABC

$$\left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c} \right)^n \geq 3^{n-3} \cdot \frac{2p^2}{Rr}, \text{ where } n \geq 2.$$

Proof.

Base on **Lemma 2** and the last inequality from **Remark 1** we obtain:

$$\left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c} \right)^n = \left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c} \right)^2 \cdot \left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c} \right)^{n-2} \geq \frac{2p^2}{3Rr} \cdot 3^{n-2} = 3^{n-3} \cdot \frac{2p^2}{Rr}.$$

Equality holds if and only if the triangle is equilateral.

□

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA
TURNU - SEVERIN, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com