

INEQUALITY IN TRIANGLE 301
ROMANIAN MATHEMATICAL MAGAZINE
2017

MARIN CHIRCIU

1. In ΔABC

$$\sum \frac{a}{(b+c)(b+c-a)} \geq \frac{18r^2}{abc}$$

Proposed by Panagiote Ligouras - Florence - Italy

Proof.

We prove the following lemma:

Lemma

2. In ΔABC

$$\sum \frac{a}{(b+c)(b+c-a)} = \frac{2p^2(R-r) + Rr(4R+r)}{pr(p^2 + r^2 + 2Rr)}$$

$$\begin{aligned} \sum \frac{a}{(b+c)(b+c-a)} &= \sum \left(\frac{1}{b+c-a} - \frac{1}{b+c} \right) = \sum \frac{1}{b+c-a} - \sum \frac{1}{b+c} = \\ &= \frac{4R+r}{2pr} - \frac{5p^2+r^2+4Rr}{2p(p^2+r^2+2Rr)} = \\ &= \frac{2p^2(R-r) + Rr(4R+r)}{pr(p^2+r^2+2Rr)} \end{aligned}$$

Let's pass to solving the problem from the enunciation.

Using the **Lemma**, the inequality that we have to prove can be written:

$$\begin{aligned} \frac{2p^2(R-r) + Rr(4R+r)}{pr(p^2+r^2+2Rr)} &\geq \frac{18r^2}{abc} \Leftrightarrow \frac{2p^2(R-r) + Rr(4R+r)}{pr(p^2+r^2+2Rr)} \geq \frac{18r^2}{4pRr} \Leftrightarrow \\ p^2(4R^2 - 4Rr - 9r^2) + r(8R^3 + 2R^2r - 18Rr^2 - 9r^3) &\geq 0 \end{aligned}$$

We distinguish the following cases:

1. If $4R^2 - 4Rr - 9r^2 \geq 0$, the inequality is obvious.
2. If $4R^2 - 4Rr - 9r^2 < 0$, the inequality can be rewritten:

$$p^2(9r^2 + 4Rr - 4R^2) \leq r(8R^3 + 2R^2r - 18Rr^2 - 9r^3).$$

Using Gerretsen's inequality $p^2 \leq 4R^2 + 4Rr + 3r^2$ it is enough to prove that:

$$\begin{aligned} (4R^2 + 4Rr + 3r^2)(9r^2 + 4Rr - 4R^2) &\leq r(8R^3 + 2R^2r - 18Rr^2 - 9r^3) \Leftrightarrow \\ \Leftrightarrow 8R^4 + 4R^3r - 19R^2r^2 - 33Rr^3 - 18r^4 &\geq 0 \Leftrightarrow (R-2r)(8R^3 + 20R^2r + 21Rr^2 + 9r^3) \geq 0 \\ \text{which is obviously from Euler's inequality } R &\geq 2r. \end{aligned}$$

The equality holds if and only if the triangle is equilateral.

□

Remark

Inequality 1. can be strengthened:

3. In ΔABC

$$\sum \frac{a}{(b+c)(b+c-a)} \geq \frac{9Rr}{abc}$$

Proof. Using the **Lemma** the inequality can be written:

$$\begin{aligned} \frac{2p^2(R-r) + Rr(4R+r)}{pr(p^2+r^2+2Rr)} &\geq \frac{9Rr}{abc} \Leftrightarrow \frac{2p^2(R-r) + Rr(4R+r)}{pr(p^2+r^2+2Rr)} \geq \frac{9Rr}{4pRr} \Leftrightarrow \\ p^2(8R-17r) + r(16R^2-14Rr-9r^2) &\geq 0. \end{aligned}$$

We distinguish the cases:

1. If $8R-17r \geq 0$, the inequality is obvious.
2. If $8R-17r < 0$, the inequality can be rewritten:

$$p^2(17r-8R) \leq r(16R^2-14Rr-9r^2).$$

Using Gerretsen's inequality $p^2 \leq 4R^2 + 4Rr + 3r^2$ it suffices to prove that:

$$\begin{aligned} (4R^2 + 4Rr + 3r^2)(17r-8R) &\leq r(16R^2-14Rr-9r^2) \Leftrightarrow \\ \Leftrightarrow 16R^3 - 10R^2r - 29Rr^2 - 30r^3 &\geq 0 \Leftrightarrow (R-2r)(16R^2 + 22Rr + 15r^2) \geq 0, \\ \text{which is obvious from Euler's inequality } R &\geq 2r. \end{aligned}$$

The inequality holds if and only if the triangle is equilateral.

□

Remark.

Inequality 3. is stronger than *inequality 1.*

4. In ΔABC

$$\sum \frac{a}{(b+c)(b+c-a)} \geq \frac{9Rr}{abc} \geq \frac{18r^2}{abc}.$$

Proof.

See *inequality 3.* and Euler's inequality $R \geq 2r$.

The inequality holds if and only if the triangle is equilateral.

□

Remark.

Also *inequality 3.* can be developed:

5. In ΔABC

$$\sum \frac{a}{(b+c)(b+c-a)} \geq \frac{9R^2}{2abc}$$

Proof.

Using the **Lemma**, the inequality that we have to prove can be written:

$$\frac{2p^2(R-r) + Rr(4R+r)}{pr(p^2+r^2+2Rr)} \geq \frac{9R^2}{2abc} \Leftrightarrow \frac{2p^2(R-r) + Rr(4R+r)}{pr(p^2+r^2+2Rr)} \geq \frac{9R^2}{9pRr} \Leftrightarrow p^2(7R-16r) + Rr(14R-r) \geq 0.$$

We distinguish the cases:

1. If $7R - 16r \geq 0$, the inequality is obvious.
2. If $7R - 16r < 0$, the inequality can be rewritten:

$$p^2(16r - 7R) \leq Rr(14R - r).$$

Using Gerretsen's inequality $p^2 \leq 4R^2 + 4Rr + 3r^2$ it suffices to prove that:

$$(4R^2 + 4Rr + 3r^2)(16r - 7R) \leq Rr(14R - r) \Leftrightarrow 14R^3 - 11R^2r - 22Rr^2 - 24r^3 \geq 0 \Leftrightarrow (R - 2r)(14R^2 + 17Rr + 12r^2) \geq 0,$$

which is obvious from Euler's inequality $R \geq 2r$.

The inequality holds if and only if the triangle is equilateral.

□

Remark.

Inequality 5. is stronger than inequality 3.

6. In ΔABC

$$\sum \frac{a}{(b+c)(b+c-a)} \geq \frac{9R^2}{2abc} \geq \frac{9Rr}{abc}$$

Proof.

See inequality 5. and Euler's inequality $R \geq 2r$.

The inequality holds if and only if the triangle is equilateral.

□

Remark.

The inequalities can be written:

7. In ΔABC

$$\sum \frac{a}{(b+c)(b+c-a)} \geq \frac{9R^2}{2abc} \geq \frac{9Rr}{abc} \geq \frac{18r^2}{abc}$$

Remark.

Let's obtain an inequality having an opposite sense.

8. In ΔABC

$$\sum \frac{a}{(b+c)(b+c-a)} \leq \frac{9R^2}{16Sr}.$$

Proof.

Using the **Lemma**, the inequality that we have to prove can be written:

$$\frac{2p^2(R-r) + Rr(4R+r)}{pr(p^2 + r^2 + 2Rr)} \leq \frac{9R^2}{16Sr} \Leftrightarrow \frac{2p^2(R-r) + Rr(4R+r)}{pr(p^2 + r^2 + 2Rr)} \leq \frac{9R^2}{16r^2p} \Leftrightarrow$$

$$p^2(9R^2 - 32Rr + 32r^2) + Rr(18R^2 - 55Rr - 16r^2) \geq 0.$$

Because $9R^2 - 32Rr + 32r^2 > 0$ ($\Delta < 0$, for the trinomial $9x^2 - 32x + 32$), using Gerretsen's inequality $p^2 \geq 16Rr - 5r^2$ is suffices to prove that:

$$(16Rr - 5r^2)(9R^2 - 32Rr + 32r^2) + Rr(18R^2 - 55Rr - 16r^2) \geq 0 \Leftrightarrow$$

$$\Leftrightarrow 81R^3 - 306R^2r + 328Rr^2 - 80r^3 \geq 0 \Leftrightarrow (R - 2r)(80R^2 - 144Rr + 40r^2) \geq 0,$$

which is obviously from Euler's $R \geq 2r$.

The inequality holds if and only if the triangle is equilateral.

□

Remark.

We can write the double inequality:

9. In ΔABC

$$\frac{9R}{8S} \leq \sum \frac{a}{(b+c)(b+c-a)} \leq \frac{9R^2}{16Sr}.$$

Proposed by Marin Chirciu - Romania

Proof.

See inequalities 2. and 8.

The inequality holds if and only if the triangle is equilateral.

We've obtained a refinement of Euler's inequality.

□

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA
TURNU - SEVERIN, MEHEDINTI.
E-mail address: dansitaru63@yahoo.com