Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

INEQUALITY IN TRIANGLE 339

ROMANIAN MATHEMATICAL MAGAZINE
2017

MARIN CHIRCIU

1. In $\triangle A B C$

$$
\frac{1}{A I^{2}}+\frac{1}{B I^{2}}+\frac{1}{C I^{2}} \geq \frac{3}{2 R r}
$$

Proposed by Rovsen Pirguliev - Sumgait - Azerbaidian

Proof.
We have $A I=\frac{r}{\sin \frac{A}{2}}$. We obtain $\sum \frac{1}{A I^{2}}=\sum \frac{\sin ^{2} \frac{A}{2}}{r^{2}}=\frac{1}{r^{2}} \sum \sin ^{2} \frac{A}{2}=$

$$
=\frac{1}{r^{2}} \cdot \frac{2 R-r}{2 R}=\frac{2 R-r}{2 R r^{2}}
$$

The inequality we have to prove can be written $\frac{2 R-r}{2 R r^{2}} \geq \frac{3}{2 R r} \Leftrightarrow R \geq 2 r$ (Euler's inequality).
The equality holds if and only if the triangle is equilateral.

Remark.

> The inequality can be strengthened:
2. In $\triangle A B C$

$$
\frac{1}{A I^{2}}+\frac{1}{B I^{2}}+\frac{1}{C I^{2}} \geq \frac{3}{4 r^{2}}
$$

Proposed by Marin Chirciu - Romania

Proof.
We use the identity $\sum \frac{1}{A I^{2}}=\frac{2 R-r}{2 R r^{2}}$, the inequality can be written $\frac{2 R-r}{2 R r^{2}} \geq \frac{3}{4 r^{2}} \Leftrightarrow R \geq 2 r$, obviously from Euler's inequality.
The equality holds if and only if the triangle is equilateral.

Remark.
Inequality 2. is stronger than inequality 1.
3. In $\triangle A B C$

$$
\frac{1}{A I^{2}}+\frac{1}{B I^{2}}+\frac{1}{C I^{2}} \geq \frac{3}{4 r^{2}} \geq \frac{3}{2 R r}
$$

Proof.
See inequality 2 and Euler's inequality.
The equality holds if and only if the triangle is equilateral.

Remark.

The following inequality holds:

4. In $\Delta A B C$

$$
\frac{1}{A I^{2}}+\frac{1}{B I^{2}}+\frac{1}{C I^{2}} \geq \frac{3}{4 r^{2}} \geq \frac{3}{2 R r} \geq \frac{81}{4 p^{2}} \geq \frac{3}{R^{2}}
$$

Proof.

The first inequality is 2, the second follows from Euler's inequality, the third is equivalent with $2 p^{2} \geq 27 R r$, which follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$ and Euler's inequality $R \geq 2 r$ and the forth is Mitrinovic's ineuality $p^{2} \leq \frac{27 R^{2}}{4}$.

Now, let's find an inequality having an opposite sense.

5. In $\Delta A B C$

$$
\frac{1}{A I^{2}}+\frac{1}{B I^{2}}+\frac{1}{C I^{2}} \leq \frac{3 R}{8 r^{3}}
$$

Proof.
Using the identity $\sum \frac{1}{A I^{2}}=\frac{2 R-r}{2 R r^{2}}$, the inequality can be written
$\frac{2 R-r}{2 R r^{2}} \leq \frac{3 R}{8 r^{3}} \Leftrightarrow 4 r(2 R-r) \leq 3 R^{2} \Leftrightarrow 3 R^{2}-8 R r+4 r^{2} \geq 0 \Leftrightarrow(R-2 r)(3 R-2 r) \geq 0$, obviously from Euler's inequality $R \geq 2 r$.
The equality holds if and only if the triangle is equilateral.

The following double inequality can be written:

6. In $\Delta A B C$

$$
\frac{3}{4 r^{2}} \leq \frac{1}{A I^{2}}+\frac{1}{B I^{2}}+\frac{1}{C I^{2}} \leq \frac{3 R}{8 r^{3}}
$$

Proof.
See inequalities 2 and 5.
The equality holds if and only if the triangle is equilateral.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

