SOLUTION TO PROBLEM SP.055. FROM ROMANIAN MATHEMATICAL MAGAZINE
 NUMBER 4, SPRING 2017

MARIN CHIRCIU

SP.055. Let m_{a}, m_{b}, m_{c} be the lengths of medians of a triangle $A B C$ with inradius r. Prove that

$$
\begin{gathered}
\frac{m_{a}+m_{b}+m_{c}}{\sin ^{2} A+\sin ^{2} B+\sin ^{2} C} \geq 4 r \\
\text { Proposed by George Apostolopoulos - Messolonghi - Greece }
\end{gathered}
$$

Proof.
With sine theorem we write the inequality:

$$
\frac{m_{a}+m_{b}+m_{c}}{a^{2}+b^{2}+c^{2}} \geq \frac{r}{R^{2}} \Leftrightarrow \sum m_{a} \geq \frac{r}{R^{2}} \cdot \sum a^{2}
$$

We use the known inequality $m_{a} \geq \frac{b^{2}+c^{2}}{4 R}$ it follows:
$\sum m_{a} \geq \sum \frac{b^{2}+c^{2}}{4 R}=\frac{2 \sum a^{2}}{4 R}=\sum \frac{\sum a^{2}}{2 R} \geq \frac{r}{R^{2}} \cdot \sum a^{2}$, where the last inequality
is equivalent with $R \geq 2 r$, namely Euler's inequality.
The equality holds if and only if the triangle is equilateral

The inequality can be strengthened:

1. Let m_{a}, m_{b}, m_{c} be the lengths of medians of a triangle $A B C$ with inradius r.

Prove that

$$
\frac{m_{a}+m_{b}+m_{c}}{\sin ^{2} A+\sin ^{2} B+\sin ^{2} C} \geq 2 R .
$$

Proof.

> With sine theorem we write the inequality:

$$
\frac{m_{a}+m_{b}+m_{c}}{a^{2}+b^{2}+c^{2}} \geq \frac{1}{2 R} \Leftrightarrow \sum m_{a} \geq \frac{1}{2 R} \cdot \sum a^{2} .
$$

Using the known inequality $m_{a} \geq \frac{b^{2}+c^{2}}{4 R}$ it follows:

$$
\sum m_{a} \geq \sum \frac{b^{2}+c^{2}}{4 R}=\frac{2 \sum a^{2}}{4 R}=\frac{1}{2 R} \cdot \sum a^{2}
$$

Equality holds if and only if the triangle is equilateral.

Inequality 1. is stronger then $\boldsymbol{S P} .055$.
2. Let a, b, c be the lengths of the sides of a triangle with circumradius R.

Prove that
$\frac{m_{a}+m_{b}+m_{c}}{\sin ^{2} A+\sin ^{2} B+\sin ^{2} C} \geq 2 R \geq 4 r$.
Proof.
We use Inequality 1. and Euler's inequality $R \geq 2 r$.
The equality holds if and only if the triangle is equilateral.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI

E-mail address: dansitaru63@yahoo.com

