Number 4

ROMANIAN MATHEMATICAL MAGAZINE

Founding Editor DANIEL SITARU

 wwwssmrmh.ro
ROMANIAN MATHEMATICAL MAGAZINE

PROBLEMS FOR JUNIORS

JP.046. Let a, b, c, d be positive real numbers such that $a+b+c+d=4$. Prove that

$$
\frac{a}{b(b+c+d)^{2}}+\frac{b}{c(c+d+a)^{2}}+\frac{c}{d(d+a+b)^{2}}+\frac{d}{a(a+b+c)^{2}} \geq \frac{4}{9}
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

JP.047. Let a, b, c be positive real numbers such that $a b+b c+c a+a b c \leq 4$. Prove that
a. $3+a+b+c \geq \overline{2}(\sqrt{a b}+\sqrt{b c}+\sqrt{c a})$.
b. $3+\frac{5}{3}(a+b+c) \geq(\sqrt[3]{a}+\sqrt[3]{b})(\sqrt[3]{b}+\sqrt[3]{c})(\sqrt[3]{c}+\sqrt[3]{a})$.

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

JP.048. Prove that for any positive real numbers a, b, c

$$
\begin{aligned}
\frac{a}{b}+\frac{b}{c}+ & \frac{c}{\boldsymbol{a}} \geq \frac{1}{3}+\frac{(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{b}+\boldsymbol{c})(\boldsymbol{c}+\boldsymbol{a})}{\boldsymbol{a}^{2} \boldsymbol{b}+\boldsymbol{b}^{\mathbf{2}} \boldsymbol{c}+\boldsymbol{c}^{\mathbf{2}} \boldsymbol{a}} \\
& \text { Proposed by Nguyen Viet Hung - Hanoi - Vietnam }
\end{aligned}
$$

JP.049. Let $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers such that

$$
\frac{1}{x_{1}}+\frac{2}{x_{2}}+\ldots+\frac{n}{x_{n}}=\frac{n(n+1)}{2}
$$

Find the minimum possible value of

$$
\begin{aligned}
& \quad \boldsymbol{x}_{\mathbf{1}}+\boldsymbol{x}_{\mathbf{2}}^{\mathbf{2}}+\ldots+\boldsymbol{x}_{\boldsymbol{n}}^{\boldsymbol{n}} \\
& \text { Proposed by Nguyen Viet Hung - Hanoi - Vietnam }
\end{aligned}
$$

JP.050. Let a, b, c and d be distinct positive integers such that

$$
\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}
$$

is a integer. Prove that $a+b+c+d$ is not prime.
Proposed by Nguyen Viet Hung - Hanoi - Vietnam

JP.051. Prove that in any triangle the following relationship holds:

$$
\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a} \leq \frac{R}{n R+(1-n) \cdot 2 r}
$$

where $0 \leq n \leq \frac{1}{2}$.
Proposed by Marin Chirciu - Romania

JP.052. Given $a, b, c>0$ and $a^{2}+b^{2}+c^{2}=6$, prove

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+a+b+c \geq 6
$$

Proposed by Nguyen Phuc Tang - Dong Thap - Vietnam

JP.053. If $a, b, c>0$ and $a+b+c=3$ prove that

$$
\sum a\left(\frac{1}{b^{n}}+\frac{1}{c^{n}}\right) \geq \frac{18}{a^{n}+b^{n}+c^{n}}
$$

where $\boldsymbol{n} \geq \mathbf{0}$.

JP.054. Let m_{a}, m_{b}, m_{c} be the lengths of the medians of a triangle $A B C$. Prove that

$$
\frac{9}{4 R+r} \leq \frac{1}{m_{a}}+\frac{1}{m_{b}}+\frac{1}{m_{c}} \leq \frac{1}{r}
$$

where R and r are the circumradius and inradius of $A B C$ respectively.

Proposed by Martin Lukarevski - Stip - Macedonia

JP.055. Let $A B C D$ be an inscriptible and circumscriptible quadrilateral, p its semi perimeter. R and r the radii of circumcenter, respectively incenter, a, b, c, d its sides (a and c are the opposite sides). Prove that:
a) $2 \frac{R^{2}}{r^{2}} \geq \frac{a}{c}+\frac{c}{a}+\frac{b}{d}+\frac{d}{b} \geq 2 \sqrt{2} \frac{R}{r}$
b) $\frac{R^{2}}{r^{2}}-4 \geq\left(\frac{a}{c}+\frac{c}{a}\right)\left(\frac{b}{d}+\frac{d}{b}\right)$

JP.056. Let s_{a} is symedian and r_{a}, r are exradius and inradius triangle of $A B C$ respectively. Prove that

$$
\begin{aligned}
\frac{\boldsymbol{r}_{\boldsymbol{a}}}{\boldsymbol{s}_{\boldsymbol{a}}+\boldsymbol{r}}+ & \frac{\boldsymbol{r}_{\boldsymbol{b}}}{\boldsymbol{s}_{\boldsymbol{b}}+\boldsymbol{r}}+\frac{\boldsymbol{r}_{\boldsymbol{c}}}{\boldsymbol{s}_{\boldsymbol{c}}+\boldsymbol{r}} \geq
\end{aligned} \quad\left(\frac{\mathbf{3} \boldsymbol{r}}{\boldsymbol{R}}\right)^{\mathbf{2}} .
$$

JP.057. Let ABC be an arbitrary triangle and I_{a}, I_{b}, I_{c} are excenters of $A B C . I_{a} B C, I_{b} C A, I_{c} A B$ are the extriangles of $A B C$. Let $h_{i}(i=1,2,3, \ldots, 9)$ the altitudes of extriangles. Prove that

$$
\begin{aligned}
& \prod_{i=1}^{\mathbf{9}} \boldsymbol{h}_{\boldsymbol{i}}=\left(\prod_{a, b, c} \boldsymbol{r}_{\boldsymbol{a}}\right)^{\mathbf{3}} \\
& \quad \text { Proposed by Mehmet Şahin - Ankara - Turkey }
\end{aligned}
$$

JP.058. Prove that for all $x \in \mathbb{R}$ we have

$$
\begin{aligned}
& \cos (\boldsymbol{\operatorname { s i n }} \boldsymbol{x})>\mid \boldsymbol{\operatorname { s i n }}(\boldsymbol{\operatorname { c o s } \boldsymbol { x }) |} \\
& \text { Proposed by Abdallah El Farisi - Bechar }- \text { Algerie }
\end{aligned}
$$

JP.059. Let a, b, c be the side lengths of a triangle $A B C$ with inradius r. Prove that

$$
\begin{aligned}
& \frac{\mathbf{1}}{\boldsymbol{a}^{\mathbf{3}}} \tan \frac{\boldsymbol{A}}{\mathbf{2}}+\frac{\mathbf{1}}{\boldsymbol{b}^{\mathbf{3}}} \tan \frac{\boldsymbol{B}}{\mathbf{2}}+\frac{\mathbf{1}}{\boldsymbol{c}^{\mathbf{3}}} \boldsymbol{\operatorname { t a n }} \frac{\boldsymbol{C}}{\mathbf{2}} \leq \frac{\boldsymbol{R}}{\mathbf{4 8 r ^ { 4 }}} \\
& \text { Proposed by George Apostolopoulos - Messolonghi - Greece }
\end{aligned}
$$

JP.060. Let a, b and c be the lengths of the sides of a triangle with circumradius R. Prove that

$$
\frac{a b}{a+b}+\frac{b c}{b+c}+\frac{c a}{c+a} \leq \frac{3 \sqrt{3}}{2} R
$$

Proposed by George Apostolopoulos - Messolonghi - Greece

PROBLEMS FOR SENIORS

SP.046. Prove that for every positive integer n,

$$
\begin{aligned}
\ln \frac{n+\mathbf{1}}{\mathbf{2}} & <\frac{\mathbf{1}}{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{3}}+\ldots+\frac{\mathbf{1}}{\mathbf{n}}<\log _{\mathbf{2}} \frac{\boldsymbol{n}+\mathbf{1}}{\mathbf{2}} \\
& \text { Proposed by Nguyen Viet Hung - Hanoi - Vietnam }
\end{aligned}
$$

SP.047. Evaluate without calculator

$$
\sum_{k=1}^{17} \cos ^{4} \frac{k \pi}{36}
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

SP.048. Prove that the following inequality holds for all nonnegative real numbers a, b, c

$$
\left(a^{4}+b^{4}+c^{4}\right)\left(a b^{3}+b c^{3}+c a^{3}\right) \geq\left(a^{3} b+b^{3} c+c^{3} a\right)\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

SP.049. Prove that the following inequality holds for all positive real numbers x, y

$$
\begin{aligned}
& \quad \boldsymbol{x}^{\boldsymbol{y}-\boldsymbol{x}} \cdot \boldsymbol{y}^{\boldsymbol{x}-\boldsymbol{y}} \leq \mathbf{1} \\
& \text { Proposed by Nguyen Viet Hung - Hanoi - Vietnam }
\end{aligned}
$$

SP.050. Let $a \geq b \geq c>0$. Prove that

$$
a^{a-b} b^{b-c} c^{c-a} \geq 1
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

SP.051. If $a, b, x, y, z \in(0, \infty)$ and $m \in[0, \infty)$ then:

$$
\begin{gathered}
\frac{\boldsymbol{x}}{(\boldsymbol{a y}+\boldsymbol{b} \boldsymbol{z})^{\boldsymbol{m + 1}}}+\frac{\boldsymbol{y}}{(\boldsymbol{a} \boldsymbol{z}+\boldsymbol{b} \boldsymbol{x})^{\boldsymbol{m + 1}}}+\frac{\boldsymbol{z}}{(\boldsymbol{a} \boldsymbol{x}+\boldsymbol{b} \boldsymbol{y})^{\boldsymbol{m + 1}}} \geq \frac{\mathbf{3}^{\boldsymbol{m}+\mathbf{1}}}{(\boldsymbol{a}+\boldsymbol{b})^{\boldsymbol{m + 1}}(\boldsymbol{x}+\boldsymbol{y}+\boldsymbol{z})^{\boldsymbol{m}}} \\
\text { Proposed by D.M. Bătineţu - Giurgiu; Neculai Stanciu - Romania }
\end{gathered}
$$

SP.052. In any triangle $A B C$ the following relationship holds:

$$
\frac{1}{(\cos A+\cos B)^{2}}+\frac{1}{(\cos B+\cos C)^{2}}+\frac{1}{(\cos C+\cos A)^{2}} \geq 3
$$

Proposed by D.M. Bătineţu - Giurgiu; Neculai Stanciu - Romania

SP.053. If $x, y, z \in(0, \infty)$ then:

$$
\begin{array}{r}
\frac{\boldsymbol{x}}{(\boldsymbol{y}+\boldsymbol{z})^{\mathbf{3}}}+\frac{\boldsymbol{y}}{(\boldsymbol{z}+\boldsymbol{x})^{\mathbf{3}}}+\frac{\boldsymbol{z}}{(\boldsymbol{x}+\boldsymbol{y})^{\mathbf{3}}} \geq \frac{\mathbf{2 7}}{\mathbf{8 (x + \boldsymbol { y } + \boldsymbol { z }) ^ { \mathbf { 2 } }}} \\
\text { Proposed by D.M. Bătineţu-Giurgiu - Romania }
\end{array}
$$

SP.054. Let $a \in\left(0, \frac{\pi}{2}\right), b \in[1, \infty), m, n \in \mathbb{R}_{+}^{*}$ and $f, g, h, k:[-a, a] \rightarrow \mathbb{R}$ be a continuous functions such that: $f(-x)=-f(x), g(-x)=-g(x), h(-x)=h(x), k(-x)=k(x)$.
Evaluate

$$
\int_{-a}^{a} \frac{f(x)+g(x)}{(b-\cos x)^{m} h(x)+k(x) \sin ^{2 n} x} d x
$$

Proposed by D.M. Bătineţu - Giurgiu; Neculai Stanciu - Romania

SP.055. Let m_{a}, m_{b}, m_{c} be the lengths of medians of a triangle $A B C$ with inradius r. Prove that

$$
\frac{m_{a}+m_{b}+m_{c}}{\sin ^{2} A+\sin ^{2} B+\sin ^{2} C} \geq 4 r .
$$

SP.056. Let $A B C$ be a triangle such that

$$
\left(\frac{1}{\sin B}+\frac{1}{\sin C}\right) \cdot(-\sin A+\sin B+\sin C)=2
$$

Prove that $\varangle A \leq \frac{\pi}{3}$.
Proposed by George Apostolopoulos - Messolonghi - Greece

SP.057. If $a, b, c, d \in \mathbb{R}_{+}^{*}, a<b$ and $f: \mathbb{R} \rightarrow \mathbb{R}_{+}^{*}$ is a continuous function such that $f(a+b-x)=f(x), \forall x \in \mathbb{R}$, then evaluate

$$
\int_{a}^{b} \frac{f(x-a)(c+d f(b-x))}{c(f(x-a)+f(b-x))+2 d f(x-a) f(b-x)} d x
$$

Proposed by D.M. Bătineţu - Giurgiu; Neculai Stanciu - Romania

SP.058. Compute:
$\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\tan \frac{1}{n+i}-\tan \frac{1}{n+i+1}\right)\left(\cos \frac{1}{n+1}+\cos \frac{1}{n+2}+\ldots+\cos \frac{1}{n+i}\right)$
Proposed by Daniel Sitaru - Romania

SP.059. Compute:

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{\left(1^{p}+2^{p}+\ldots+k^{p}\right)^{2}}{n^{p+1}\left(1^{p}+2^{p}+\ldots+n^{p}\right)} ; p \in \mathbb{N}
$$

Proposed by Daniel Sitaru - Romania

SP.060. Prove that if $a, b, c, d \in \mathbb{R} ; a^{2}+b^{2} \neq 0 ; c^{2}+d^{2} \neq 0$ then:

$$
\frac{(a d-b c)\left(3\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)-4(a d-b c)^{2}\right)}{\left(\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\right)^{\frac{3}{2}}} \leq 1
$$

Proposed by Daniel Sitaru - Romania

UNDERGRADUATE PROBLEMS

UP.046. Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that

$$
a^{a^{2}} b^{b^{2}} c^{c^{2}} \geq\left(a^{2}+b^{2}+c^{2}\right)^{a^{2}+b^{2}+c^{2}}
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

UP.047. Let a, b, c be distinct rational numbers such that

$$
\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0 .
$$

Prove that

$$
\sqrt{\frac{(b-c)^{4}}{a^{2}}+\frac{(c-a)^{4}}{b^{2}}+\frac{(a-b)^{4}}{c^{2}}}
$$

is a rational number.

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

UP.048. Let a, b, c be non-negative real numbers such that $a+b+c=1$. Prove that

$$
\begin{aligned}
& a^{4}+b^{4}+c^{4}+26 a b c \leq 1 \\
& \text { Proposed by Nguyen Viet Hung - Hanoi - Vietnam }
\end{aligned}
$$

UP.049. Prove that the following inequality holds for any triangle $A B C$,

$$
\begin{array}{r}
a^{2}\left(5 m_{a}-m_{b}-m_{c}\right)+b^{2}\left(5 m_{b}-m_{c}-m_{a}\right)+c^{2}\left(5 m_{c}-m_{a}-m_{b}\right) \leq 12 m_{a} m_{b} m_{c} \\
\text { Proposed by Nguyen Viet Hung - Hanoi - Vietnam }
\end{array}
$$

UP.050. Let a, b, c be positive real numbers such that $a^{2} b+b^{2} c+c^{2} a=3$. Prove that

$$
\begin{aligned}
& \frac{1}{a(a+b)^{2}}+\frac{1}{b(b+c)^{2}}+\frac{1}{c(c+a)^{2}} \geq \frac{3}{4} \\
& \quad \text { Proposed by Nguyen Viet Hung - Hanoi - Vietnam }
\end{aligned}
$$

UP.051. Let be $a \in[0, \infty) ; f:(0, \infty) \rightarrow(0, \infty)$

$$
\begin{gathered}
f(x)=(\Gamma(x+1))^{\frac{1}{x}} \text {. Find: } \\
\Omega=\lim _{x \rightarrow \infty}\left((f(x+1))^{a}-(f(x))^{a}\right) \cdot x^{1-a}
\end{gathered}
$$

Proposed by D.M. Bătineţu - Giurgiu; Neculai Stanciu - Romania

UP.052. Let a, b, c be positive real numbers such that $a+b+c=3$. Prove that

$$
\frac{a^{6}}{a^{2}+b}+\frac{b^{6}}{b^{2}+c}+\frac{c^{6}}{c^{2}+a} \geq \frac{3}{2}
$$

Proposed by George Apostolopoulos - Messolonghi - Greece

UP.053. If $x, y, z \in \mathbb{C}^{*} ; A, B, C \in M_{n}(\mathbb{C}) ; n \geq 2$ are such that $x^{2} A+B=x A B ; y^{2} B+C=y B C ; z^{2} C+A=z C A$ then:

$$
\begin{aligned}
\left(\left(y^{2}+1\right) x+\frac{x^{2}+1}{z}\right) A+ & \left(\left(z^{2}+1\right) y+\frac{y^{2}+1}{x}\right) B+\left(\left(x^{2}+1\right) z+\frac{z^{2}+1}{y}\right) C= \\
& =(x+y+z) A B C
\end{aligned}
$$

Proposed by D.M. Bătineţu - Giurgiu; Neculai Stanciu - Romania

UP.054. Let n be an integer, $n \geq 2$ and let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers situated in the interval $[2+\sqrt{3}, \infty)$. Prove the inequality

$$
\begin{gathered}
\left(a_{1}^{2}-a_{1}+1\right)\left(a_{2}^{2}-a_{2}+1\right) \ldots\left(a_{n}^{2}-a_{n}+1\right) \geq \\
\geq 3^{n-1}(2+\sqrt{3})^{n-1}\left(\left[\frac{a_{1} a_{2} \ldots a_{n}}{(2+\sqrt{3})^{n-1}}\right]^{2}-\frac{a_{1} a_{2} \ldots a_{n}}{(2+\sqrt{3})^{n-1}}+1\right)
\end{gathered}
$$

Proposed by Leonard Giugiuc - Romania; Michael Rozenberg - Israel

UP.055. Evaluate:

$$
I=\int_{0}^{1} \frac{\ln ^{3} x}{2-x} d x
$$

Proposed by Shivam Sharma - New Delhi - India

UP.056. Let $A B C$ and be a triangle and Ω is first Brocard point of $A B C$. Let D, E, F are on the sides $B C, C A, A B$ of $A B C$ respectively. If $m(B \Omega D)=m(C \Omega E)=m(A \Omega F)=90^{\circ}$ then prove that $\frac{|B D|}{|B C|}+\frac{|C E|}{|C A|}+\frac{|A F|}{|A B|}=2$

> Proposed by Mehmet Şahin - Ankara - Turkey

UP.057. Let $a, b \in \mathbb{R}$ such that $a+b>0$ then

$$
\left(\frac{a+b}{2}\right)^{n} \leq \frac{1}{n+1} \sum_{k=0}^{n} a^{k} b^{n-k} \leq \frac{a^{n}+b^{n}}{2}
$$

Proposed by Abdallah El Farisi - Bechar - Algerie
UP.058. Let $A B C$ be an arbitrary triangle and $X Y Z$ is the Kiepert triangle of $A B C$. If $K(\theta)$ is a Kiepert perspector ω is first Brocard angle then prove that
a) $\frac{\operatorname{Area}(X Y Z)}{\text { Area }(A B C)}=\frac{1}{4}\left(3 \tan ^{2} \theta+2 \tan \theta \cdot \cot \omega+1\right)$
b) if $\theta=\omega$ then $X Y Z$ is Gallatly - Kiepert triangle takes the name.
Prove that

$$
\frac{\operatorname{Area}(X Y Z)}{\operatorname{Area}(A B C)}=3 \cdot \frac{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}
$$

UP.059. Let a, b, c be positive real numbers. Prove that

$$
\begin{gathered}
\frac{\left(a^{2}-a b+b^{2}\right)^{2}}{(a+b)^{4}}+\frac{\left(b^{2}-b c+c^{2}\right)^{2}}{(b+c)^{4}}+\frac{\left(c^{2}-c a+a^{2}\right)^{2}}{(c+a)^{4}} \geq \frac{3}{16} \\
\text { Proposed by George Apostolopoulos - Messolonghi - Greece }
\end{gathered}
$$

UP.060. Let a, b, c be positive real numbers with $a+b+c=1$. Prove that

$$
\begin{aligned}
& \left(1+\frac{\mathbf{1}}{2 a+b}\right)^{c} \cdot\left(1+\frac{\mathbf{1}}{\mathbf{2 b + c}}\right)^{a} \cdot\left(1+\frac{\mathbf{1}}{\mathbf{2 c}+\boldsymbol{a}}\right)^{\boldsymbol{b}} \geq \mathbf{2} \\
& \quad \text { Proposed by George Apostolopoulos - Messolonghi - Greece }
\end{aligned}
$$

Mathematics Department, "Theodor Costescu" National Economic, College Drobeta Turnu - Severin, MEHEDinti, ROMANiA

