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Murray Klamkin’s Duality Principle for
Triangle Inequalities

Daniel Sitaru

Mathematics Department

Colegiul National Economic Theodor Costescu
Drobeta Turnu - Severin, Mehedinti, Romania

Abstract

In this article we build inequalities using Murray Klamkin’s duality princi-
ple. This is a way to solve inequalities in six variables, three of them being
the lengths of sides in a triangle and the other three positive numbers.

1. Introduction

In 1979, M. S. Klamkin published in "Elements der Mathematik" [3]
the article “Triangle Inequalities from Triangle Inequalities” about the du-
ality principle. Famous inequalities such as Euler’s, Leibniz’s, Ionescu-
Weitzenbock’s, Mitrinovic’s, Carlitz’s, and Curry’s can be restated using
this principle. Using some notations in a new, constructed triangle, these
inequalities are rediscovered in a classical form. We begin with Klamkin’s
theorem.

Theorem 1 If P € Int(AABC),letPA =z, PB =y; PC =z, AB =
¢, BC'=a,andCA = b. Then ax, by, cz can be the lengths of the sides of
a triangle.

Proof. [3] [4] Let 21, 29, 23, 24 € C be such that the points A, B, C, and
P. correspond to z1, 22, 23 and zy4, respectively. We can easily prove the
identity:

(21 —24)(22 — 23) + (22 — 24)(23 — 21) + (23 — 24) (21 — 22) =0
and hence

—(23 — 24)(21 — 22) = (21 — 24)(22 — 23) + (22 — 24)(23 — 21).
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Then
| = (23 — 24) (21 — 22)| = |(21 — 24) (22 — 23) + (23 — 24) (23 — 21)
<ler — 24| - |z — 23| + |22 — 24| - |23 — 21|
Hence: cz < ax + by. Analogously: ax < by + cz and by < ax + cz. B
Now let AM N P have sides of lengths ax, by, cz, and let s be the
semiperimeter, S the area, R the exradius and r the inradius. Then:
_ax +by+cz
B 2
1
S = Z\/(a:r + by + cz)(ax + by — cz)(ax — by + cz)(by + cz — ax)

abcxyz
V(az + by + cz)(ax + by — cz)(ax — by + ¢2)(by + cz — ax)
V(az + by + cz)(ax + by — cz)(ax — by + ¢2)(by + cz — ax)
2(azx + by + cz)

_ 1 [(az + by — cz)(ax — by + cz)(by + cz — ax)
2 ax + by + cz '

R =

2. Applications

Application 1 Let be P € Int(AABC) and let PA = x, PB = y,
and PC = z.
Prove that:

(ax + by — cz)(ax — by + cz)(by + cz — ax) < abcryz
Proof. The inequality can be written:
(ax + by — cz)(ax — by + cz)(by + cz — ax)(ax + by + cz)
< abexyz(azx + by + cz)
or, equivalently,
abcxyz
V(ax + by — cz)(az — by + c2)(by + cz — ax)(az + by + cz)
- 2y/(ax + by — cz)(azx — by + cz)(by + cz — ax)(ax + by + cz)
- 2(ax + by + cz).
This is equivalent to R > 2r, which is Euler’s Inequality for AMNP. R
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Application 2 Let be P € Int(AABC) and let PA = x, PB = y,
and PC = z.
Prove that:
a’x? + b2y + 222
a2b2c22y? 22

9
<
= (ax + by + cz)(ax + by — cz)(ax — by + cz)(by + cz — ax)
Proof. The inequality can be written:

(az)? + (by)* + (c2)?

< 9(abcxyz)?
~ (V(az + by + c2)%(ax + by — cz)(ax — by + c2)(by + cz — ax))?
which is equivalent to
(az)? + (by)? + (c2)* < 9RZ.
This is Leibniz’s Inequality for AMNP. R
Application 3 Let be P € Int(AABC) and let PA = x, PB = y,

and PC = z.
Prove that:

(a%2? + V22 + ¢222)?
> 3(ax + by + cz)(ax + by — cz)(ax — by + cz)(by + cz — ax).

Proof. The inequality can be written:
(az)? + (by)* + (c2)?

> 4V3. (az + by + cz)(ax + by — Cz)4(a:r — by + c2)(by + cz — ax)

or, equivalently,
(az)? + (by)? + (c2)? > 4V/38,
which is Ionescu - Weitzenbock’s Inequality for AMNP. R
Application 4 Let be P € Int(AABC) and let PA = x, PB = y,

and PC = z.
Prove that:

27(by + cz — ax)(ax + cz — by)(ax + by — cz) < (az + by + c2)3
Proof. The inequality can be written:
27(by+cz—azx)(ax+cz—by)(ax+by—cz)(ax+by+cz) < (ax+bytcz)?
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or, equivalently,
2716 - S? < (ax + by + c2)*.

Then

123 -8 < (azx + by + c2)?
so that

6V3 -1 (ax + by + ¢2) < (azx + by + c2)2.
It follows that
6\/§~r§a:n+by+cz
or
6\/§ -r < 2s
and hence that
3V3r < s.

This last is Mitrinovic’s Inequality for AMNP. R

Application 5 Let be P € Int(AABC) and let PA = x, PB = y,
and PC = z.
Prove that:

(ax+by+cz)? (ax+by—cz)? (ax—by+cz)? (by+cz—ax)® < 27(aberyz)*

Proof. The inequality can be written:

V(azx + by + cz)(ax + by — cz)(ax — by + c2)(by + cz — ax)
< \/g(abc:ryz)g

or, equivalently,

48 < V3 -/ (ax)? - (by)? - (c2)2.
Then 45
7= < V) by ().
which is Carlitz’s Inequality [1] for AMNP. R
Application 6 Let be P € Int(AABC) and let PA = x, PB = y,
and PC = z.
Prove that:

(az+by+cz2)?(ax+by —cz) (ax —by+c2) (by+cz—ax) < 27(aberyz)?

Proof. The inequality can be written:

27(abexyz)?
(azx 4 by + c2)?

(ax+by+cz)(ax+by—cz)(ar—by+cz)(by+cz—ax) <

or, equivalently,

27(abcxyz)?
16(5)* < :
6(5)" = (ax + by + c2)?
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Then

< 3\/§abc:ryz

T axr+by+cz

and hence O(a) (by)(c2)
ax)(by)(cz

4v38 < :
— (ax) + (by) + (cz)
which is Curry’s Inequality [2] for AMNP. R
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