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1. AN EASY INEQUALITY WITH THREE INTEGRALS

Let a, b, c > 0. Prove that

a2

∫ b

0

arctanx

x
dx+ b2

∫ c

0

arctanx

x
dx+ c2

∫ a

0

arctanx

x
dx < a3 + b3 + c3

Proposed by Daniel Sitaru - Romania

Remark (by Alexander Bogomolny).
The starting point of the solutions below is the observation that arctanx

x
< 1,

for all x > 0. The fractions has a limit of 1 as x→ 0+ which allows for
the definition (by continuity) f(1) = 1.

The inequality is equivalent to θ
tan θ

< 1, for θ ∈
(
0, π

2

)
.

Obviously, the inequality holds for any f(x) ≤ 1 in leau of arctanx
x

.

Solution 1.

We have ∫ u

0

arctanx

x
dx < 1.

It follows that

a2

∫ b

0

arctanx

x
dx+ b2

∫ c

0

arctanx

x
dx+ c2

∫ a

0

arctanx

x
dx < a2b+ b2c+ c2a

Suffice it to show that a2b+ b2c+ c2a ≤ a3 + b3 + c3. By the AM-GM
inequality ,

a3 + a2 + b3 ≥ 3
3
√
a6b3 = 3a2b,

b3 + b3 + c3 ≥ 3b2c,

c3 + c3 + a3 ≥ 3c2a.

Summing up gives 3(a2 + b3 + c3) ≥ 3(a2b+ b2c+ c2a), as desired.
�

Solution 2.

This solution only differs from the above in treatment of
a2b+ b2c+ c2a ≤ a3 + b3 + c3. This is simply true by the rearrangement
inequality .

�
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Acknowledgment (by Alexander Bogomolny).
The problem above has been kindly posted at the CutTheKnotMath
facebook page by Daniel Sitaru, along with a solution (Solution 1) by
Soumava Chakraborty. Leo Giugiuc and Ravi Prakash have commented
with practically identical solutions (Solution 2). The inequality has been
published in the Romanian Mathematical Magazine .

2. AN INEQUALITY FROM GAZETA MATEMATICA, MARCH
2016

Let a, b, c be positive numbers such that a2 + b2 + c2 = 3.

Prove that (a+ c)(1 + b) ≤ 4.

Proposed by Daniel Sitaru, Leonard Giugiuc - Romania

Proof 1.

Define matrix


1 a
a b
b c
c 1

. We have

At ·A =

(
1 a b c
a b c 1

)
·


1 a
a b
b c
c 1


=

(
a2 + b2 + c2 + 1 a+ ab+ bc+ c
a+ ab+ bc+ c a2 + b2 + c2 + 1

)
=

(
4 (a+ c)(1 + b)

(a+ c)(1 + b) 4

)
By Cauchy - Binet theorem , det(At ·A) ≥ 0. Therefore, [(a+ c)(1 + b)]2 ≤ 16,
or (a+ c)(1 + b) ≤ 4. �

Proof 2.
We use spherical coordinates. Let b =

√
3 cos t, a =

√
3 sin t cosu, and

c =
√

3 sin t sinu, where 0 < t < π
2
.

We need to prove that
√

3(cosu+ sinu)(1 +
√

3 cos t) sin t ≤ 4.

Observe that 1 < sinu+ cosu ≤
√

2.
Thus, suffice it to prove that

√
6(1 +

√
3 cos t) sin t ≤ 4.

Consider the function f :
(
0, π

2

)
→ R, defined by f(t) = (1 +

√
3 cos t) sin t.

We have f ′(t) = 2
√

3 cos2 t+ cos t−
√

3 sin t which implies

max f
(

arccos
(

1√
3

))
= 2

√
2
3
. Therefore,

√
6(1 +

√
3 cos t) sin t ≤

√
6 · 2

√
2

3
= 4.

�
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Proof 3.
(a− b)2 + (b− c)2 + (a− 1)2 + (c− 1)2 ≥ 0 which simplifies to
(a2 + b2 + c2) + 1− ab− bc− a− c ≥ 0.
This is exactly (a+ c)(1 + b) ≤ 4

�

Proof 4.

By the AM-QM inequality, a+b+c
3
≤
√
a2+b2+c2

3
= 1. Further, by the

AM −GM inequality,

(a+ c)(b+ 1) ≤
(a+ c+ b+ 1

2

)
≤
(3 + 1

2

)2
= 4.

�

Proof 5.

From a2 + b2 + c2 = 3, 3
∑
a2 ≥

(∑
a
)2

, implying
(∑

a
)2
≤ 9, or

a+ b+ c ≤ 3. a+ b+ c+ 1 ≤ 4. Therefore,

4 ≥ (a+ c) + (b+ 1) ≥ 2
√

(a+ c)(b+ 1), i.e., 2 ≥
√

(a+ c)(b+ 1), or

4 ≥ (a+ c)(b+ 1)

Equality is attained when a + c = b + 1, which, with a2 + b2 + c2 = 3
implies a = b = c = 1. �

Proof 6.
From (x− y)2 ≥ 0 we have 2xy ≤ x2 + y2. We use this with the couples
(a, b), (b, c), (1, a), (1, c):

2ab ≤ a2 + b2

2bc ≤ b2 + c2

2a ≤ 1 + a2

2c ≤ 1 + c2

adding which gives 2(a+ c+ ab+ bc) ≤ 2 + 2(a2 + b2 + c2) = 8, and this
is exactly (a+ c)(b+ 1) ≤ 4. �

Proof 7.

To continue:
(a+ c)(1 + b) ≤

√
2
√

3− b2(1 + b)
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≤
√

2
√

4− 2b(1 + b) =
√

2

√
(4− 2b)(1 + b)2

=
√

2
√

(1 + b)(1 + b)(4− 2b) ≤
√

2

√(1 + b+ 1 + b+ 4− 2b

3

)3
= 4

The equality is achieved for 1+b = 1+b = 4−2b, making b = 1 which,

by the way, satisfies 3− b2 ≥ 0. a = c =
√

3−b2
2

, i.e. a = b = c = 1.

�

Proof 8.

To continue:
(a+ c)(1 + b) ≤

√
2
√

3− b2(1 + b)

≤
√

2
3− b
√

2
(1 + b) ≤

(3− b+ 1 + b

2

)2
= 4

Equality is achieved for 3− b = 1 + b and a = c =
√

3−b2
2

, i.e.,

a = b = c = 1.
�

Proof 9.
Observe that (a+ c)(1 + b) = a · 1 + a · b+ c · 1 + b · c such that by the
Cauchy - Schwarz inequality,

(a · 1 + a · b+ c · 1 + b · b · c)2 ≤ (a2 + b2 + c2 + b2)(12 + a2 + 12 + c2)

which leads to a chain of inequalities

(a+ ab+ c+ bc)2 ≤ (3 + b2)(2 + a2 + c2)

[(a+ c)(1 + b)]2 ≤ (3 + b2)(2 + 3− b2)

= (3 + b2)(5− b2) ≤
[3 + b2 + 5− b2

2

]2
=
[8
2

]2
,

and, therefore, (a+ c)(1 + b) ≤ 4. �

Proof 10.
From (a+ c)2 ≤ 2(a2 + c2) and (1 + b)2 ≤ 2(1 + b2) we obtain a sequence
of inequalities:

(a+ c)2(1 + b)2 ≤ 4(a2 + c2)(1 + b2) ≤

≤ 4
(a2 + b2 + 1 + b2

2

)2
= 4

(4

2

)2
= 4 · 4.

and, therefore, (a+ c)(1 + b) ≤ 4. �
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Proof 11.

We prove
(
(a+b)(1+c)

)2
≤ 16 when the point (a, b, c) lies on the sphere

of radius
√

3 centred at the origin. At height c the sphere is a circle of
radius r =

√
3− c2 and the maximum of a+ b is r

√
2 (consider the line

with slope −1 tangent to this circle in the first quadrant of the plane).

We want thus the maximum of 2(1 + c2)(3− c2) for 0 ≤ c ≤
√

3. The
value 16 is attained for c = 1.
But 16− 2(1 + c)2(3− c2) = 2(c− 1)2(5 + 4c+ c2) ≥ 0, for all real c.

�

Proof 12.
Use Lagrange multipliers to prove that

(1) max
a2+b2+c2=3

(a+ c)(1 + b) = 4.

Let J = (a+ c)(1 + b) + λ(a2 + b2 + c2 − 3).

Taking ∂J
∂a

= ∂J
∂b

= ∂J
∂c

= ∂J
∂λ

= 0 yields

(2) 1 + b+ 2aλ = 0,

(3) 1 + c+ 2bλ = 0,

(4) 1 + b+ 2cλ = 0,

(5) a2 + b2 + c2 = 3

(6) a = c (from 2 and 4)

(7) 2a2 + 2abλ = 0 (from 3 and 6)

(8) b+ b2 + 2abλ = 0 (from 2)

(9) b+ b2 = 2a2 (from 7 and 8)

(10) 2a2 + b2 = 3 (from 5 and 6)

(11) 2b2 + b− 3 = 0, b = 1,−
3

1
(from 9 and 10)

Hence, b = 1 and from 10, a = ±1, implying a = c = 1 and b = 1, and 1
follows.

�

Remark (by Alexander Bogomolny).
It is clear that the equality is attained for a = b = c = 1 - a symmetric
condition whereas the inequality itself is asymmetric. In analogy with
the above derivation, we can show (b+a)(1+c) ≤ 4 and (b+c)(1+a) ≤ 4.
The sum of the three gives (a+ b+ c) + (ab+ bc+ ca) ≤ 6 which is just
more symmetric.

Acknowledgment (by Alexander Bogomolny).
Proofs 1 and 2 are by Leo Giugiuc and Daniel Sitaru; Proof 3 is by
Nevena Sybeva; Proof 4 is by Augustini Moraru; Proof 5 is by Imad Zak
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and independently by Rahim Shahbazov; Proof 6 is by Robert Kosova;
Proof 7 and 8 are by Kunihiko Chikaya; Proof 9 and 10 are by Sk Rejuan;
Proof 11 is by Grégoire Nicollier; Proof 12 is by Michalos Nikolau.

3. AN INEQUALITY IN CYCLIC QUADRILATERAL III

Prove that in a cyclic quadrilateral ABCD, with sides AB = a,BC = b,

CD = c,DA = d, and the semiperimeter s =
a+ b+ c+ d

2
, the following

inequality holds

sinA sinB ≤
( s
a
− 1

)(s
b
− 1

)(s
c
− 1

)(s
d
− 1

)
.

Proposed by Daniel Sitaru - Romania

Solution.
By Brahmagupta’s theorem, the required inequality is equivalent to

abcd sinA sinB ≤ [ABCD]2

where [ABCD] denotes the area of the quadrilateral. By the AM-GM
inequality, this is equivalent to

abcd sinA sinB ≤
(ad+ bc) sinA

2
·

(ab+ cd) sinA

2
,

meaning abcd ≤ (ad+bc)
2
· (ab+cd)

2
.

But, by the AM-GM inequality,
√
abcd ≤ ad+bc

2
and, similarly,√

abcd ≤ ab+cd
2

.

The product of the two is the required abcd ≤ (ad+bc)
2
· (ab+cd)

2
.

Equality is achieved when ad = bc and ab = cd. Talking the product:
a2bd = c2bd, or a2 = c2, and, subsequently, a = c.
But then b = d, implying that ABCD is a parallelogram, and, being
cyclic, it is a square. �

Acknowledgment (by Alexander Bolgomolny).
The problem from his book Math Accent has been posted at the Cut-
TheKnotMath facebook page by Daniel Sitaru, along with practically
identical proofs by Leo Giugiuc, Adil Abdullayev, and Ravi Prakash.

4. A TRICKY INTEGRAL INEQUALITY

Let a > 0, and define

Ω1 =

∫ a

0

(∫ a

0

√
x2 + y2 − 6x+ 9dx

)
dy

Ω2 =

∫ a

0

(∫ a

0

√
x2 + y2 − 8y + 16dx

)
dx
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Prove that Ω1 + Ω2 ≥ 5a2.

Proposed by Daniel Sitaru - Romania

Solution (by Ravi Prakash - New Delhi - India).
First note, that due to Fubini’s theorem, both repeated integrals can be
treated as double. Next observe that the integrands are the (Euclidean)
distance functions:√
x2 + y2 − 6x+ 9 = dist(B,P ) and

√
x2 + y2 − 8y + 16 = dist(A,P ),

where A,B, P are defined below:

By the triangle inequality then

Ω1 + Ω2 =

∫ a

0

∫ a

0

(√
x2 + y2 − 6x+ 9 +

√
x2 + y2 − 8y + 16

)
dxdy

=

∫ a

0

∫ a

0

(
dist(B,P ) + dist(A,P )

)
dxdy ≥

∫ a

0

∫ a

0

dist(A,B)dxdy =

=

∫ a

0

∫ a

0

5 = 5a2.

�

Extra (by Alexander Bogomolny).
The inequality just proved is always strict and can be improved for
specific values of a. For example, it is not hard to see that, for a ≤ 0.5,
dist(B,P ) + dist(A,P ) > 6.
The beauty of the problem is in the implied generality. Indeed, any
distance function ca be used in place of the Euclidean distance to make
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the problem even more intriguing. For example, the taxicab distance
leads to the following inequality:∫ a

0

∫ a

0

(|x− 3|+ |y|dx)dy +

∫ a

0

(∫ a

0

(|x|+ |y − 4|)dy
)
dx ≥ 7a2.

Using the bounded distances disguises the problem even further. For
example, define

Ω1 =

∫ a

0

(∫ a

0

√
x2 + y2 − 6x+ 9

1 +
√
x2 + y2 − 6x+ 9

dx

)
dy

Ω2 =

∫ a

0

(∫ a

0

√
x2 + y2 − 8y + 16

1 +
√
x2 + y2 − 8y + 16

dy

)
dx.

Then Ω1 + Ω2 ≥ 5
6
a2. For another example, if

Ω1 =

∫ a

0

(∫ a

0

|x− 3|+ |y|
1 + (|x− 3|+ |y|)

dx

)
dy

Ω2 =

∫ a

0

(∫ a

0

|x|+ |y − 4|
1 + (|x|+ |y − 4|)

dy

)
dx,

then Ω1 + Ω2 ≥ 7
8
a2.

Acknowledgment (by Alexander Bogomolny).
The problem from the Romanian Mathematical Magazine has been posted
at CutTheKnotMath facebook page by Daniel Sitaru, with a solution by
Ravi Prakash.

5. COSPHERICAL POINTS

Find x ∈ R such that:

A
(√3

2
,

√
3

4
,
1

4

)
, B
(√3

2
,
1

4
,

√
3

4

)
, C
(1

2
,
3

4
,

√
3

4

)
, D
(
0,

1

2
, x
)

are cospherical points.

Proposed by Daniel Sitaru - Romania

Solution (by Leo Giugiuc), Comments (by Alexander Bogomolny).
In the Euclidean 2D space any three distinct points are concylics, unless
they are collinear. In the Euclidean 3D space any four distinct points
are cospherical, unless they are coplanar by not concyclic.
The three distinct points A,B,C define a plane, say α and a circle, say
ω. It is immediately verifiable that A,B,C ∈ S, where S denotes the
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unit sphere x2 + y2 + z2 = 1. In particular, ω = α ∩ S.
The condition for the four points be coplanar is given by∣∣∣∣∣∣∣∣

2
√

3
√

3 1 1

2
√

3 1
√

3 1

2 3
√

3 1
0 2 4x 1

∣∣∣∣∣∣∣∣ = 0.

The equation implies x = 5
4
, i.e., D =

(
0, 1

2
, 5
4

)
, meaning D /∈ S and,

therefore, D /∈ ω. So, if x = 5
4
, A,B,C,D are coplanar, but not co-

spherical. If x /∈ 5
4
, then A,B,C,D are not coplanar and, hence, are

cospherical.

Thus the answer is R\
{

5
4

}
. �

6. CYCLIC INEQUALITY

For a, b, c > 0 the following inequality holds:√
a2 − ab+ b2 +

√
b2 − bc+ c2 +

√
c2 − ca+ a2

≤ a+ b+ c+
√
a2 + b2 + c2 − ab− bc− ca

Source: AOPS

Solution (by Claudia Nănuţi, Diana Trăilescu, Daniel Sitaru, Leo Giugiuc).

Set w = −1
2

+ i
√

3
2

, which is a rotations by 120◦ counterclockwise.

Define x = a, y = bw, z = cw2.

First of all |x| = |a|, |y| = |b|, |z| = |c|. Then also, |x+y| =
√
a2 − ab+ b2,

|y + z| =
√
b2 − bc+ c2, |z + x| =

√
c2 − ca+ a2, and

|x+ y + z| =
√
a2 + b2 + c2 − ab− bc− ca. I’ll verify the later identity:

x+ y+ z =
(
a−

1

2
b−

1

2
c
)

+ i
(√3

2
b−
√

3

2
c
)
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It follows that

|x+ y + z|2 =
(
a−

1

2
b−

1

2
c
)2

+
3

4
(b− c)2

= a2 +
1

4
b2 +

1

4
c2 − ab− ac+

1

2
bc+

3

4
b2 +

3

4
c2 −

3

2
bc

= a2 + b2 + c2 − ab− bc− ca,
as required. It is now clearly seen that the problem is simply a refor-
mulations of Hlawka’s inequality:

|x+ y|+ |y+ z|+ |z+ x| ≤ |x|+ |y|+ |z|+ |x+ y+ z|

true for any three complex numbers x, y, z. �

7. AN APPLICATION OF SCHUR’S INEQUALITY - II

Prove that for x, y, z > 0 such that xyz = 1 , the following inequality
holds: ∑

(x4 + y3 + z) ≥
∑(x2 + y2

z

)
+ 3

Proposed by Daniel Sitaru, Leonard Giugiuc - Romania

Proof 1 (by proposers).
We use Schur’s inequality twice:
With r = 1 in the form

∑
x3 + 3xyz ≥

∑
xy(x+ y) and,

with r = 2 in the form
∑
x3 + xyz

∑
x ≥

∑
xy(x2 + y2).

Since xyz = 1 the two can be rewritten as∑
x3 + 3 ≥

∑(x+ y

z

)
,

∑
x4 +

∑
x ≥

∑(x2 + y2

z

)
.

Adding up,∑
(x4 + x3 + x) + 3 ≥

∑(x2 + y2

z

)
+
x

z
+
z

x
+
y

x
+
x

y
+
y

z
+
z

y
.

But
∑(x

z
+ z

x

)
≥ 2 + 2 + 2 = 6. It follows that

∑
(x4 + x2 + x) ≥

∑(x2 + y2

z

)
+ 6− 3

or ∑
(x4 + y2 + z) ≥

∑(x2 + y2

z

)
+ 3

�
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Proof 2 (by Imad Zak - Saida - Lebanon).
We start with Schur’s inequality:∑

x4 + xyz
∑

x =
∑

x4 +
∑

x =
∑

(x4 + x) ≥

≥
∑

xy(x2 + y2) =
∑ x2 + y2

z
.

Further, by the AM-GM inequality,∑
x3 ≥ 3xyz = 3.

Adding this to the previous inequality yields the required result.
Equality holds for x = y = z = 1. �

8. A4 - VARIABLE INEQUALITY FROM ROMANIAN
MATHEMATICAL MAGAZINE

Prove that, for x, y, z, η ∈ R,

|(a− b)(b− c)(c− a)| ≤
∑
cyc

|a− b||a+ c+ η||b+ c+ η|

Proposed by Daniel Sitaru - Romania

Proof (by Ravi Prakash - New Delhi - India).
Denote x = b+c+η, y = c+a+η, z = a+b+η. Then, e.g., a−b = y−x,
and the inequality to prove becomes

|(x− y)(y − z)(z − x)| ≤
∑
cycl

|(x− y)xy|

We have,

RHS =
∑
cycl

|(x− y)xy| ≥ |(x− y)xy + (y − z)yz + (z − x)zx|

= |(x− y)(y − z)(z − x)| = |(a− b)(b− c)(c− a)|,
as required.
Equality is achieved when x = y = z, i.e., when a = b = c. �

Acknowledgment (by Alexander Bogomolny).
Daniel Sitaru has kindly posted the above problem form the Romanian
Mathematical Magazine, with a proof by Ravi Prakash, at the CutThe-
KnotMath facebook page.

9. A SYSTEM OF EQUATIONS IN DETERMINANTS

Statement (by Alexander Bogomolny).
Daniel Sitaru has kindly posted the following problem form the Roma-
nian Mathematical Magazine and its solutions by Ravi Prakash at the
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CutTheKnotMath facebook page:
Find A ∈Mn(C) such that:{

det(A+XY ) = det(A+ Y X), ∀X,Y ∈MnC
detA = 1

Solution (by Ravi Prakash - New Delhi - India).
Let Eij = (δij) be the matrix with all elements zero, except for the one
in i− s row and j − s column which is 1.

EijErs =

{
Eis, if j = r

0, otherwise

Consider X = αEik, α ∈ C and Y = Eks;XY = αEis, Y X = 0 unless
i = s and X = Eii, otherwise. Thus, taking i 6= s,
det(A+ αEis) = det(A).
Now using the minor expansion of the determinant,

det(A+ αEis) =

n∑
j=1

(aij + αδij)Mij(−1)i+j

=

n∑
j=1

aijMij(−1)i+j + αMis(−1)i+s

= det(A) + αMis(−1)i+s

Since this equals det(A) and α is arbitrary, Mis = 0, i 6= s. Then from

det(A) =

n∑
j=1

aijMij(−1)i+j = aiiMii

it follows that aiiMii = 1, for all i = 1, . . . , n.
In particular, for i = 1, . . . , n, aii 6= 0 and Mii 6= 0.
On the other hand, the choice X = Ers and Y = Esr leads to

det(A) + αMrr = det(A) + αMss

so that all dialog minors of A are equal and, as consequence, so are all
its diagonal elements: aii = λ, for i = 1, . . . , n and a fixed λ ∈ C.
Next, for i1 6= i2,

0 =

n∑
j=1

ai1jMi2j(−1)i1+j = ai1i2Mi2i2 ,

implying that all off - diagonal elements of A are zero: ai1i2 = 0, for
i1 6= i2. Thus A = λE, where E is the unit matrix.
Finally, 1 = det(A) = λn implies λn = 1, i.e. λ is a root of unity. �
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10. AN INEQUALITY IN INTEGERS

Statement (by Alexander Bogomolny).
The following inequality, due (1979) to professor Radu Gologan has
posted at the CutTheKnotMath facebook page by Leo Giugiuc along
wit a solution by Daniel Sitaru and Leo Giugiuc. Radu Gologan is the
Romanian team leader for the IMO.

Let a and b be positive integers such that
a

b
<
√

7.

Prove that
a

b
+

1

ab
<
√

7.

Proposed by Radu Gologan - Romania

Solution (by Leonard Giugiuc, Daniel Sitaru - Romania).
a2 < 7b2 so that a2 ≤ 7b2−1. In Z7, a

2 ∈ {0, 1, 2, 4}, making a2 = 7b2−1
impossible. Thus, necessarily, a2 ≤ 7b2−2. But then, again, a2 = 7b2−2
is also impossible such that, in fact a2 ≤ 7b2 − 3, or, a ≤

√
7b2 − 3.

Introduce function f(x) = x+ 1
x

which is monotone increasing for x ≥ 1.
It follows that (√

7b2 − 3 +
1

√
7b2 − 3

)2
≥
(
a+

1

a

)2
which is equivalent to

7b2 − 1 +
1

7b2 − 3
≥
(
a+

1

a

)2
.

In addition, since b is a positive integer, 1 > 1
7b2−3

, such that 7b2 >(
a+ 1

a

)2
.

In other words, 7 >
(
a
b

+ 1
ab

)2
, i.e., a

b
+ 1

ab
<
√

7, as required. �

11. ORTHOGONALITY IN ISOGONAL CONJUGACY

BD and BE are isogonal conjugate in ∆ABC;BE ⊥ CE and
BD ⊥ A. F is the intersection of CD and AE.

Prove that BF ⊥ DE.

Proposed by Elberling Vargas Diaz - Peru
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Solution (by Claudia Nănuţi, Diana Trăilescu, Daniel Sitaru, Leo Giugiuc).
Obviously, the angles BDC and BEA are acute. Consequently, the
angles BDE and BED are also acute. So, without loss of generality, we
may choose D = −u,E = v and B = i, with u, v > 0. On the other hand,
triangle BDA and BEC are inversely similar and right angled at D and

E, respectively; hence there is k > 0 such that A−D
B−D =

(
C−E
B−E

)
= −ki.

From here, A = k − u − uki and B = v − k − vki. Let’s write the
equations of the straight lines AE and CD:{

AE : ukx− (u+ v − k)y = uvk,

CD : vkx+ (u+ v − k)y = −uvk.

These give us x = 0, meaning that F lies on the y - axis. But DE was
chosen to be the x - axis and the two meet at the right angle. �

Remark (by Alexander Bogomolny).
Francisco Javier Garćıa Capitán has observed that there is a second
line, say, BE′. It is easy to see that E′ = CD∩ (BC) where (BC) is the
circle with BC as a diameter. In this case, F ′ = E′. He posed this as
an algebraic problem:
If we consider the vertices with coordinates B = (0, 0), C = (a, 0) and
A = (u, v), the lines y = mx and y = nx are isogonal with respect to

the angle B if n = v−mu
u+mv

. For any m there exists another value of n,

precisely n = a+am2−u−mv
m(u+mv)

such that the lines y = mx and y = nx

satisfy the conditions of the problem. Give some geometric description
of this line.

12. ANGLES IN TRIANGLE: AN EXERCISE

In ∆ABC;AB = AC,∠BAC = 120◦ and BC =
√

5.D is a point
inside ∆ABC such that BD = 1 and CD =

√
2

Prove that ∠ADC = 60◦.

Proposed by Kadir Altintas - Afyon - Turkey
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Solution 1 (by Alexander Bogomolny).
Rotate the diagram 120◦ counterclockwise around A : B goes to C,C to
C′, and D to D′.

By the Law of Cosines in ∆BCD,

5 = 1− 2
√

2 cos∠BDC + 2,

such that cos∠BDC = −
√

2
2

, giving ∠BDC = 135◦.
We thus have ∠CBD+∠BCD = 45◦,∠C′CD′ = ∠CBD,∠BCC′ = 60◦,
leading to ∠DCD′ = 15◦.

As we know, sin 15◦ =
√

6−
√

2
4

and cos 15◦ =
√

6+
√

2
4

.
Since CD′ = BD = 1, we can employ the Law of Cosines in ∆DCD′ to
find DD′:

(DD′)2 = 1− 2
√

2

√
6 +
√

2

4
+ 2 = 2−

√
3

Further, by the Law of Sines in ∆DCD′,

1

sin2 ∠CDD′
=

2−
√

3

(
√

6−
√

2)/4
= 4,

implying < CDD′ = 30◦.
Note that ∠ADD′ = 30◦ also because, by the construction,
∠DAD′ = 120◦ and AD = AD′. It follows that ∠ADC = 60◦. �



20

Solution 2 (by Claudia Nănuţi, Diana Trăilescu, Daniel Sitaru and Leonard Giugiuc).

Thinking of the points as complex numbers, choose

B = − 2√
5
, C = 3√

5
, D = i√

5
. With this choice, A = 1

2
√

5
+ i

√
5

2
√

3
. With

φ = ∠ADC, A−D
C−D = AD

CD
(cosφ + i sinφ) such that φ =

Im(A−D
C−D )

Re(A−D
C−D )

. Thus,

we get

A−D
C −D

=
1

20
√

3

[(√
3 + i(5− 2

√
3)
)
(3 + i)

]
=

√
3− 1

4
√

3
(1 + i

√
3),

from which tanφ =
√

3, i.e., φ = 60◦. �

13. APPLICATION OF CAUCHY - SCHWARZ’S INEQUALITY

If a, b, c ≥ 1, prove that:√
a2 − 1 +

√
b2 − 1 +

√
c2 − 1 ≤

ab+ bc+ ca

2

Generalize!

Proposed by Dorin Marghidanu - Romania

Cauchy - Schwarz Inequality (by Alexander Bogomolny).

The two solutions below invoke the most important and useful math-
ematical tool - the Cauchy - Schwarz inequality that was covered almost
in passing at the old an by now dysfunctional Cut-The-Knot forum. Be-
low I state the inequality and give two proofs (out of a known great
variety.)

For all real xi, yi, i = 1, 2, . . . , n,(
n∑
i=1

xiyi

)2

≤
n∑
i=1

x2
i

n∑
i=1

y2
i

The equality is only attained when the two sequence (vectors) {x1, . . . , xn}
and {y1, . . . , yn} are linearly dependent, i.e., when, say, there are u and
v such that uxi + vyi = 0, for all i, 1 ≤ i ≤ n.

Proof 1.
Consider

f(t) =

n∑
i=1

(txi + yi)
2

=

n∑
i=1

(t2x2
i + 2txiyi + y2

i )

= t2

(
n∑
i=1

x2
i

)
+2t

(
n∑
i=1

xiyi

)
+

n∑
i=1

y2
i
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Since f(t) ≥ 0, for all t ∈ R, the discriminant
D = (

∑n
i=1 xiyi)

2 − (
∑n
i=1 x

2
i )(
∑n
i=1 y

2
i ) is not positive.

This is exactly the Cauchy - Schwarz inequality. �

Proof 2.
The Cauchy - Schwarz inequality is a direct consequence of a stronger
result, Lagrange’s identity :(

n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)
−
(

n∑
i=1

xiyi

)2

=
∑

1≤i≤j≤n

(xiyi − xiyi)2

�

Solution 1 (by Claudia Nănuţi, Diana Trăilescu, Daniel Sitaru and Leonard Giugiuc).

We denote x =
√
a2 − 1, etc. Obviously, x, y, z ≥ 0 and the task becomes

to prove ∑
cycl

√
(x2 + 1)(y2 + 1) ≥ 2(x+ y + z)

By the Cauchy - Schwarz inequality,
√

(x2 + 1)(y2 + 1) ≥ x + y, with
equality only when xy = 1. Applying this term-by-term yields the re-
quired inequality. Equality holds if x = y = z = 1, i.e., a = b = c =

√
2.

For a generalization,

n∑
i=1

√
a2
i − 1 ≤

1

2

n∑
i=1

aiai+1

where an+1 = a1. For n odd, the equality is only attained when all

ai =
√

2; for n even, whenever x1, x2 = x2x3 = . . . = xnx1 = 1. �

Solution 2 (by Alexander Bogomolny).
We’all go directly to a general case. By the Cauchy - Schwarz inequality,(

n∑
i=1

√
a2i − 1

)2

≤ n

n∑
i=1

(a2i − 1)

= n

n∑
i=1

a2i − n

≤ n

n∑
i=1

aiai+1 − n

where an+1 = a1. Note that the first inequality becomes equality when-

ever all
√
a2
i − 1 are equal (i.e., whenever all a2

i are equal). The second
inequality becomes equality whenever all ai are equal. Thus the required
inequality will be proved if we manage to prove

n

n∑
i=1

aiai+1 − n ≤
(

1

2

n∑
i=1

aiai+1

)2
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Denote t =
∑n
i=1 aiai+1. We need to prove that

f(t) =
(1

2
t
)2
− nt+ n ≥ 0

This will be true for all t ∈ R provided the discriminant D = (2n)2−4n2

of the quadratic form t2 − 4nt + 4n2 is not positive. But as matter of
fact, it is always zero, implying f(t) ≥ 0, with f(2n) = 0. It follows that

n

n∑
i=1

aiai+1 − n ≤
(

1

2

n∑
i=1

aiai+1

)2

The equality is attained whenever t =
∑n
i=1 aiai+1 = 2n and all ai are

equal, implying ai =
√

2. �

Conclusion (by Alexander Bogomolny).

What do we learn from the above? Two solutions to the same prob-
lem, both using the Cauchy - Schwarz inequality, and, in the original
problem (of three terms) producing the same results. However, the two
methods lead to different generalisations for an increased number n of
terms. The difference is only noticeable when n is even, and the second
solution gives no clue that there might be a difference between the cases
of odd and even number of terms. The only thing that comes to mind
is that occasionally doing everything right may not necessarily yield a
complete (not to use the term ”right”) answer. In a certain sense, the
applications of the Cauchy - Schwarz inequality in the first solutions is
more refined that its application in the second solution, but who could
say that without first trying both ways?

14. AREAS IN THREE SQUARES

Given three squares AMNP,ABCD, and DPQR.

Prove that [∆CPN ] = [∆BPQ], where [X] denotes the area of shape
X.

Proposed by Miguel Ochoa Sanchez - Peru
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Solution 1 (by Alexander Bogomolny).
The solution is illustrated by a sequence of diagrams.
Draw BF ‖ PQ and CG ‖ NP (F on QR or its extension; G on MN or
its extension.
Then [∆CPN ] = [∆GPN ] and [∆BPQ] = [∆FPQ]:

Complete the trianglesGPN and FPQ to rectanglesGEPN and FHPQ.

We’d like to show that [GEPN ] = [FHPQ], i.e., that EP ·NP = HP ·
PQ. Consider the circles (MP ) and (PQ), with diameters MP and PR,
respectively.

Obviously, A,N ∈ (MP ) but also H ∈ (MP ).
Similarly, D,Q,E ∈ (PR).
Observe that

∠HPN = ∠HMN = ∠GRF = ∠EPQ.

In addition, ∠NHP = ∠PEQ = 135◦ because both (inscribed) angles
are subtended by the sides of squares inscribed into the circles (MP )
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and (PR).
It follows that triangles HNP and EPQ are similar, from which we have
the proposition HP

NP
= EP

PQ
which is equivalent to EP ·NP = HP ·PQ. �

Solution 2 (by Claudia Nănuţi, Diana Trăilescu, Daniel Sitaru, Leo Giugiuc).
We choose A = −1+−i, B = −1+i, C = 1+i,D = 1−i, and P = a+bi,
where −1 < a, b < 1.
First of all, N−P

A−P = −i, implying N = (a−b−1)+ i(a+b+1). Similarly,
Q−P
D−P = i, implying Q = (a+ b+ 1) + i(−a+ b+ 1). Further,

2[∆BPQ] =

∣∣∣∣∣∣
a b 1

a+ b+ 1 −a+ b+ 1 1
−1 1 1

∣∣∣∣∣∣ = 2− (a2 + b2)

Similarly, 2[∆PNC] = 2− (a2 + b2). �

15. AN INEQUALITY WITH JUST TWO VARIABLES II

Prove that, for positive a, b,( 2ab

a+ b
+
√
ab+

a+ b

2

)(a+ b

2ab
+

1
√
ab

+
2

a+ b

)
≤ 5 + 2

(a
b

+
b

a

)
Proposed by Daniel Sitaru - Romania

Solution 1 (by Soumava Chakraborty - Kolkata - India).

LHS = 3 +
4
√
a

a+ b
+
a+ b
√
ab

+
4ab

(a+ b)2
+

(a+ b)2

4ab

≤ 3 + 2 +
a+ b
√
ab

+ 1 +
(a+ b)2

4ab
= 6 +

a+ b
√
ab

+
(a+ b)2

4ab
.

Suffice it to show that

6 +
a+ b
√
ab

+
(a+ b)2

4b
≤ 5 + 2

(a
b

+
b

a

)
which is equivalent to

(1) 1 +
a+ b
√
ab

+
(a+ b)2

4ab
≤

2(a2 + b2)

ab

Now, by the GM-HM inequality ,
√
ab ≥ 2ab

a+b
, hence a+b√

ab
≤ (a+b)2

2ab
.

It follows that

(2)
a+ b
√
ab

+ 1 +
(a+ b)2

4ab
≤ 1 +

3(a+ b)2

4ab
.

1 and 2 show that the problem will be solved if we manage to prove

3(a+ b)2 + 4ab

4ab
≤

2(a2 + b2)

ab
This is equivalent to 3a2+3b2+10ab ≤ 8a2+8b2, or 5a2+5b2−1ab ≥ 0,

which is simply 5(a− b) ≥ 0.

�
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Solution 2 (by Kevin Soto Palacios - Huarmey - Peru).

We employ the obvious
2
√
ab

a+ b
≤ 1 and

4ab

(a+ b)2
≤ 1 to obtain

LHS ≤ 6 +
3(a+ b)2

4ab
.

Suffice it to prove that 6 +
3(a+ b)2

4ab
≤ 5 + 2

(a
b

+
b

a

)
.

Now note that

1 +
3(a+ b)2

4ab
≤

5

2
+

3

4

(a
b

+
b

a

)
,

Because
5

2
≤

5

4

(a
b

+
b

a

)
.

�

Solution 3 (by Soumava Chakraborty - Kolkata - India).

Using the AM-GM inequality,
a+ b

2
≥
√
ab and

2

a+ b
≤

1
√
ab

,

LHS ≤
(√

ab+
√
ab+

a+ b

2

)(a+ b

2ab
+

1
√
ab

+
1
√
ab

)
=

=
(
2
√
ab+

a+ b

2

)(a+ b

2ab
+

2
√
ab

)
=
a+ b
√
ab

+ 4 +
(a+ b)2

4ab
+
a+ b
√
ab

=

= 4 +
(a+ b)2

4ab
+

2(a+ b)
√
ab

.

Thus, suffice it to prove that

4 +
(a+ b)2

4ab
+

2(a+ b)
√
ab

≤ 5 + 2
(a
b

+
b

a

)
which is equivalent to

(a+ b)2

4ab
+

2(a+ b)
√
ab

≤ 1 + 2
a2 + b2

ab
=

2a2 + 2b2 + ab

ab
.

Now, from
1
√
ab
≤
a+ b

2ab
we get

2(a+ b)
√
ab

≤
(a+ b)2

ab
, implying

(a+ b)2

4ab
+

2(a+ b)
√
ab

≤
(a+ b)2

4ab
+

(a+ b)2

a
=

5(a+ b)2

4ab
.

Thus, suffice it to prove
5

4
·

(a+ b)2

ab
≤

2a2 + 2b2 + ab

ab
, i.e.,

5a2 + 5b2 + 10ab ≤ 8a2 + 8b2 + 4ab

which reduces to 3(a− b)2 ≥ 0.

�
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Solution 4 (by Abdallah El Farissi - Bechar - Algerie).

Let

A =
( 2ab

a+ b
+
√
ab+

a+ b

2

)(a+ b

2ab
+

1
√
ab

+
2

a+ b

)
=
( 2ab

a+ b
+
√
ab+

a+ b

2

)( 2

a+ b
+

1
√
ab

+
a+ b

2ab

)
=

1

ab

( 2ab

a+ b
+
√
ab+

a+ b

2

)2
≤

1

ab
(
√
ab+ a+ b)2 =

=
1

ab

(
ab+ 2

√
ab(a+ b) + (a+ b)2

)
≤

1

ab

(
ab+ 2(a+ b)2

)
=

=
1

ab

(
5ab+ 2(a2 + b2)

)
= 5 + 2

(a
b

+
b

a

)
.

�

Solution 5 (by Soumava Chakraborty - Kolkata - India).

Define =
2ab

a+ b
, y =

√
ab, z =

a+ b

2
. We have x ≤ y ≤ z and y2 = xz.

LHS =
(∑
cycl

x
)(∑

cycl

1

x

)
=

(
∑
cycl x)(xy + yz + zx)

xyz

=
(
∑
cycl x(xy + yz + y2)

xyz
=

(x+ y + z)2

xz
=

(x+ y + z)2

y2

RHS =
2a2 + 2b2 + 5ab

ab
=

2(a+ b)2 + ab

ab
= 1 +

8z2

y2
.

The required inequality is equivalent to
(x+ y + z)2

y2
≤ 1 +

8z2

y2
which is

(x+ y + z)2 − y2 ≤ 8z2, or, (x+ 2y + z)(x+ z) ≤ 8z2.

Since x ≤ y ≤ z, x+ 2y + z ≤ 4z and x+z ≤ 2z, which shows that, indeed,

(x+ 2y+ z)(x+ z) ≤ 8z2.

�

Solution 6 (by Daniel Sitaru - Romania).

We know that, for positive a, b, c,
2ab

a+ b
≤
√
ab ≤

a+ b

2
We’ll use Schweitzer’s inequality :(
n∑
k=1

xk

)(
n∑
k=1

1

xk

)
≤

(m+M)2n2

4mM
,

where x1, . . . , xn ∈ [m,M ],m > 0.

with n = 3,m = x1 =
2ab

a+ b
, x2 =

√
ab, and x3 =

a+ b

2
= M , we directly get

A =
( 2ab

a+ b
+
√
ab+

a+ b

2

)(a+ b

2ab
+

1
√
ab

+
2

a+ b

)
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≤ 9
( 2ab
a+b

+ a+b
2

)2

4ab
=

9

4ab

[( 2ab

a+ b

)2
+ 2ab+

(a+ b

2

)2]
=

≤
9

4ab

[
(
√
ab)2 + 2ab+

(a+ b

2

)2]
=

9

4ab

[
3ab+

(a+ b

2

)2]
=

=
9

16ab

[
14ab+ (a2 + b2)

]
=

63

8
+

9

16

(a
b

+
b

a

)
.

Now, 1 ≤
1

2

(a
b

+
b

a

)
. It then follows that

23

8
≤

23

16

(a
b

+
b

a

)
and, subsequently,

63

8
+

9

16

(a
b

+
b

a

)
≤

40

8
+

32

16

(a
b

+
b

a

)
= 5 + 2

(a
b

+
b

a

)
.

�

16. AN INEQUALITY WITH CONSTRAINT VII

If x, y, z ∈ R, x+ y − 5z = 0, x2 + z2 = 1, then: |2x+ 3y − 5z| ≤
√

101.

Proposed by Daniel Sitaru - Romania

Solution (by Alexander Bogomolny).

Since x+ y− 5z = 0, the inequality at hand is equivalent to

|(2x+ 3y − 5z)− 3(x+ y − 5z)| = | − x+ 10z| ≤
√

101.

This is the one I shall prove under the restriction x2 + z2 = 1. After the
fact, y may be found from x+ y − 5z = 0.
The straight lines −x + 10z = const may or may not meet the circle
x2 + z2 = 1.

I shall employ geometric illustration. The value of −x + 10z which is
constant on each of the lines changing monotonically in the direction of
their common normal: (−10, 1). The extreme values are attained at the
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intersection of x2 + z2 = 1 with z = −10x:

This happens when x = ± 1√
101
, z = ∓ 10√

101
such that, at these points,

| − x+ 10z| =
√

101, which proves the required inequality. �

17. LIMIT OF A RECURSIVE SEQUENCE

Let k ≥ 2 be a fixed integer; x0, x1, . . . , xk−1 complex numbers and

xn+1 =
1

k

k=1∑
s=0

xn−s for n ≥ k − 1.

Find limx→∞ xn.

Proposed by Arkady Alt - USA

Solution (by Leonard Giugiuc).
First, we introduce two lemmas:
Lemma 1
Let {an} be a sequence of complex numbers such that an 6= 0, n ≥ 0. If

lim
n→∞

∣∣∣an+1

an

∣∣∣ < 1, then lim
n→∞

an = 0.

For a proof, observe that Lemma holds for a real-valued sequence, and
so does for {|an|}. It follows that limn→∞ |an| = 0 and, therefore, also
limn→∞ an = 0.
Lemma 2
Let z be a complex number, with |z| < 1, and m ≥ 1 an integer. Then

lim
n→∞

nmzn = 0

For a proof, assume z 6= 0, for, otherwise, there is nothing to prove.
Let an = nmzn. We have

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

[(n+ 1

n

)m
· |z|

]
= |z| < 1.

Hence, by Lemma 1, limn→∞ an = 0 i.e., limn→∞ n
mzn = 0, as required.

To continue, by the definition, sequence {an} is a linear reccurence of
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order k, with the characteristic polynomial

P (x) = kxk −
k−1∑
s=0

xs = (x− 1)

k−1∑
s=0

(s+ 1)xs.

If f(x) =

k−1∑
s=0

(s+ 1)xs,

then f(1) 6= 0 so that the multiplicity of 1 as root of P (x) is 1. Also
f(−1) 6= 0.
Let z be a root of P , other than 1. We’ll show that |z| < 1. Indeed,
P (z) = 0 implies

kzk =

k−1∑
s=0

zs and, subsequently, |kzk| =

∣∣∣∣∣
k−1∑
s=0

zs

∣∣∣∣∣
Let |z| = r. Assume, for a contradiction, that r ≥ 1. Combined with
the above, this would imply

krk ≥
k−1∑
s=0

rs and, further, krk =

k−1∑
s=0

rs from which r = 1.

Now, we have assumed that z 6= 1 and observed that, as root of P, z 6=
−1. Hence —z— is not real. But the equality∣∣∣∣∣

k−1∑
s=0

zs

∣∣∣∣∣=
k−1∑
s=0

rs

only holds if z is real which is a desired contradiction. Thus, |z| < 1.
Let z1, z2, . . . , zm be the roots of P (other than 1) with multiplicities
s1, s2, . . . , sm. The the theory of linear recurrences informs us that there
exists a complex number α and polynomials Pt, t = 1, 2, . . . ,m, such that
degPt = st − 1 and

xn = α+

m∑
t=1

Pt(n) · znt , for all n ≥ 0.

By Lemma 2, lim
n→∞

[ m∑
t=1

Pt(n) · znt
]

= 0, so that lim
n→∞

xn = α.

On the other hand, we can easily verify that

k−1∑
s=0

(k − s)xn−s =

k−1∑
s=0

(s+ 1)xs.

As we pass to the limit, we get

k(k + 1)

2
· α =

k−1∑
s=0

(s+ 1)xs, such that α =
2

k(k + 1)

k−1∑
s=0

(s+ 1)xs.

�
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18. OPTIMAL QUADRILATERAL INSCRIBED IN A SQUARE

Let x, y, z, t ∈ (0,1),Ω =
∑∑∑
cycl

√
x2 + (1− y)2.

Find m = inf Ω and M =
∑

Ω .

Proposed by Daniel Sitaru - Romania

Solution (by Leonard Giugiuc - Romania).
We’ll use complex numbers.
The function f : [0, 1]4 → R, defined by f(x, y, z, t) =

∑
cycl

√
x2 + (1− y)2,

is continuous and thus attains its extrema on [0, 1]4. The extremal val-
ues on [0, 1]4 will supply its supremum and infimum on (0, 1)4.

Let’s look for infimum first.
√
x2 + (1− y)2 = |x+ i(1−y)|, etc. By the

triangle inequality,∑
cycl

√
x2 + (1− y)2 =

∑
cycl

|x+ i(i− y)|

= |(x+ y+ z+ t) + i[4− (x+ y+ z+ t)]|
= |k+ i(4− k)|

where k = x+ y + z + t, 0 ≤ k ≤ 4.
But |k+ i(4−k)| =

√
k2 + (4− k)2 ≥ 2

√
2 which is attained with k = 2,

in particular when x = y = z = t = 1
2
. Thus, m = inf Ω = 2

√
2.

To find the supremum, observe that, for real a and b,
√
a2 + b2 ≤ |a|+|b|,

with equality only when ab = 0. In our case,∑
cycl

√
x2 + (1− y)2 ≤

∑
cycl

(x+ 1− y) = 4

This is attained with x = y = z = t = 0. Thus, m = sup Ω = 4. �

19. OPTIMAL IN PARALLELEPIPED

Given a, b, c > 0 . Find minimum and maximum of
f(x) =

√
a2 + x2 +

√
b2 + (c− x)2 on interval [0, c].

Proposed by Daniel Sitaru, Leonard Giugiuc - Romania

Solution 1 (by Daniel Sitaru).
Consider a parallelepiped (the diagram below), with AB = a,BC = b,
and BF = c. Let x = BJ .
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The diagram reveals several relationships between the elements:

AJ ≤ AF , i.e.,
√
a2 + x2 ≤

√
a2 + c2

GJ ≤ GB =
√
b2 + c2, FJ = c− x,

GJ ≤ GB, i.e., =
√
b2 + (c− x)2 ≤

√
b2 + c2.

If AF + FG = Ω1 and AB +BG = Ω2 then, max f(x) = max{Ω1,Ω2}

Consider just two faces of the parallelepiped:

f(x) is exactly the path AJ + JG which attains it minimum value only
of AJG is a straight line. This happens exactly when x

c
= a

a+b
, so that

x = ac
a+b

.

Note that the algebraic formulation conceals an old problem that re-
quires from a spider sitting in the vertex A to reach the fly in a vertex
G in the shortest way possible. The second reveals another geometric
interpretation. �

Solution 2 (by Francisco Javier Garćıa Capitán).
This solution is due to Francisco Javier Garćıa Capitán and it draws on
the famous Heron’s problem.

We observe that f(x) is the distance AX +BX where A = (0, a),
B = (c, b), and X = (0, x).

Since AX +BX = AX +B′X, where B′ is the reflections of B in the x
axis, f(x) will be minimum when A,X and B′ are collinear.

To find x we can use similar triangles AOX and B′MX
(with M = (c, 0)):OX

OA
= MX

MB′
, or x

a
= c−x

b
, from which a = ac

a+b
. �
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20. PROPORTIONS AND THE INCENTER

Iis the incenter in ∆ABC. Prove that
BI

CI
=
AC

AB
implies∠∠∠ABC = ∠∠∠ACB.

Proposed by Miguel Ochoa Sanchez - Peru

Solution 1 (by Claudia Nănuţi, Diana Trăilescu, Daniel Sitaru, Leo Giugiuc).

We know that BI = 2ac
a+b+c

· cos B
2

and CI = 2ab
a+b+c

· cos C
2

, implying

BI
CI

= c
b
· cos

B
2

cos C
2

. It follows that c
b
· cos

B
2

cos C
2

= b
c
, or b2 · cos c

2
= c2 · cos B

2
.

By the Law of Sines,

16R2 · sin2 B

2
cos2

B

2
cos

C

2
= 16R2 · sin2 C

2
cos2

C

2
cos

B

2

which simplifies to 16 sin2 B
2

cos C
2

= sin2 C
2

cos C
2

.

If B 6= C, then cos B
2
6= cos C

2
. Let cos B

2
= x and cos C

2
= y. We have

(1 − x2)x = (1 − y2)y, or, y3 − x3 = y − x. Since x 6= y, this simplifies
to x2 + xy + y2 = 1, or, xy = 1− (x2 + y2).
But 0 < xy implies x2y2 < x2y2 + xy and subsequently,

xy <
√
x2y2 + xy =

√
x2y2 + 1− (x2 + y2) =

√
(x2 − 1)(y2 − 1)

which says that cos B
C

cos C
2
< sin B

2
sin C

2
, i.e., cos B+C

2
< 0, and, finally,

B+C
2

> π
2
, which is absurd. Hence, cos B

2
= cos C

2
and B = C. �

Solution 2 (by Alexander Bogomolny).
Set ∠ABC = 2β,∠ACB = 2θ.
By the Law of Sines in ∆ABC, AC

AB
= sin 2β

sin 2θ
. By the Law of Sines in

∆IBC, BI
CI

= sin θ
sinβ

. Thus we have (*) sin 2β · sinβ = sin 2θ · sin θ from

which we should be able to conlude that β = θ. It is clear that we may
assume 0 < β, θ < 90◦. But on the interval [0, 90◦] function
f(x) = sin 2x · sinx is experiencing a hump symmetric in x = 45◦.

It follows that (*) may only hold when, say, β = 45◦−ω and θ = 45◦+ω,
for −45◦ ≤ ω ≤ 45◦. Thus the only possibility to have f(β) = f(θ) is
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when β + θ = 90◦, making ∠BAC = 90◦.

It is now intuitively clear that if BI
CI

> 1, then AC
AB

< 1 and vice versa.
A rigorous justification makes use of Leo’s Lemma.
Assume 0 < β < θ < 90◦; then also 0 < 2β < 2θ < 180◦. Then
sinβ < sin θ and, by Leo’s Lemma also sin 2β < sin 2θ but then BI

CI
= AC

AB
could not hold. It follows that β = θ. �

21. SCALAR PRODUCT OPTIMIZATION

Let x, y, z, b be real numbers such that (x+ 1)2 + y2 = 1 and
(a− 2)2 + b2 = 4. Find the extreme values of the expression ax+ by.

Proposed by Leonard Giugiuc - Romania

Solution 1 (by Claudia Nănuţi, Diana Trăilescu, Daniel Sitaru, Leo Giugiuc).
The minimum is −8 because the two given circles are externally tangent
at the origin and ax + by is the scalar product of two vectors with the
end points on the circles. Hence 2 ∗ 4 ∗ (−1) = −8. To determine the
maximum, consider the points A(x, y), B(a, b), and O(0, 0). Note that

ax+ by =
−→
OA ·

−→
OB = OA ·OB · cos∠AOB. Hence, to achieve maximum,

it is necessary that A and B lie on the corresponding circles. Observe
also that ∠AOB has to be acute which allows us to assume that the two
points are in the upper half-plane. Thus, A = (−1 + cosu, sinu) and
B = (2 + 2 cos t, 2 sin t), with 0 < t, u < π. Setting v = ∠AOB, we get
on one hand

A− O
B − O

=
OA

OB
(cos v + i sin v)

while, on the other,

A− O
B − O

=
−1 cosu+ i sinu

2 + 2 cos t+ 2i sin t
=
i sin u

2
(cos u

2
+ i sin u

2
)

2 cos t
2
(cot t

2
+ i sin t

2
)

=

=
sin u

2

2 cos t
2

(
cos

π + u− t
2

+ i sin
π + u− t

2

)
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Since
sin u

2

2 cos t
2

> 0, we may identify the angles: v = π+u−t
2

and so

cos v = sin t−u
2

, implying, in particular, that t > u. Substituting,

ax+ by = OA · OB · cos v = 8 sin
u

2
cos

t

2
sin

t− u
2

= 8 sin
u

2
sin

π − t
2

sin
t− u

2
.

But, 0 < u
2
, π−t

2
, t−u

2
and u

2
+ π−t

2
+ t−u

2
= π

2
. By Jensen’s inequality,

8 sin
u

2
sin

π − t
2

sin
t− u

2
≤ 1

For equality we need u = 60◦ and t = 120◦. �

Solution 2 (by Alexander Bogomolny).
Note first that the problem could be generalized. Indeed, assuming that
x, y, z, b satisfy (x+ r)2 + y2 = r2 and (a− s)2 + b2 = s2,
(r, s > 0), ax + by = rs(cos v + i sin v), and, at the extremes of this
expression, angle v is the same, independent of the radii r, s of the
circles. So, below I shall assume r = s = 1 and use the same notations
A,B,O as the first solution. Let P (−0, 1) and Q(1, 0) be the centers of
the two circles

For a fixed point B(a, b), the scalar product ax + by is constant on

straight lines perpendicular to
−→
OB. The maximum value (for a given B)

is attained for the line tangent to (x + 1)2 + y2 = 1. If A is the point
of tangency, PA is perpendicular to that line, and therefore, parallel to
OB.
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It follows that, if A = (−1 + cosu, sinu) then B = (1 + cos 2u, sin 2u):

It then follows that

ax+ by = (−1 + cosu)(1 + cos 2u) + sinu sin 2u

= −1 + cosu− cos 2u+ (cos 2u cosu+ sin 2u sinu)

= −1 + cosu− (2 cos2 u− 1) + cosu

= −2 cos2 u+ 2 cosu = −2 cosu(cosu− 1).

The parabola f(t) = −2t(t − 1) attains its maximum for t = 1
2
. There-

fore, the maximum of ax+by is attained when cosu = 1
2
, i.e., at u = 60◦,

implying 2u = 120◦, and also v = 60◦.

With these, the maximum of ax + by equals 1
2
, or in the general case,

rs
2

. The minimum is rather obviously (−2r)(2s) = −4rs. �

22. THALES ON ANGLE BISECTORS

Let BE and CF be external angle bisectors in ∆ABC;E is on AC or
its extension, F is on AB or its extension. From point P on EF per-
pendiculars PM,PN,PQ are drawn to AC,AB and BC, respectively.

Prove that
PM + PN = PQ.
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Proposed by Miguel Ochoa Sanchez - Peru

Solution 1 (by Alexander Bogomolny).
Let’s first formulate simple affine lemma that is based on
Thales’ Theorem:

Lemma
Assume A,X,B are collinear as are A′, X′, B′.
Suppose AA′ ‖ XX′ ‖ BB′ and AX : XB = r : S.

Then XX′ = S
r+s

AA′ + r
r+s

BB′.

To continue with the solution assume EP : PF = r : s, r + s = 1, and
consider two extreme positions of P : one when P = E, the other when
P = F . Indices, e and f are added to distinguish between different
endpoints M,N,Q.

Note that Me = E and Nf = F , such that EMe = FNf = 0 and,
since BE and CF are angle bisectors, ENe = EQe and FMf = FQf .
According to the lemma, PM = sEMe + rFMf = rFMf ,
PN = sENe + rFNf = sENe,
PQ = sEQe + rFQf , so that
PQ = sEQe + rFQf = sENe + rFMf = PM + PN . �

Solution 2 (by Claudia Nănuţi, Diana Trăilescu, Daniel Sitaru, Leo Giugiuc).
Since BC is the greatest side, we may choose A(0, 1), B(−b, 0), C(c, 0),
where b, c > 0. We’ll find the locus of point X(n,m) such that
d(X,AB) + d(X,A) = d(X,B) and X is not in any open half - planes
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(B,AC), (C,AB) or (A,BC).
Under our assumptions, −m + bn − b ≥ 0,m + cn − c ≥ 0, and n ≥ 0.
We have
d(X,AB) = −m+bn−b√

b2+1
, d(X,AC) = m+cn−c√

c2+1
, and d(X,BC) = n. We

thus seek X for which −m+bn−b√
b2+1

+ m+bn−c√
c2+1

= n, implying that the sought

locus is a straight line. By the external bisector theorem,

FA/FB = CA/CB, such that F is defined by
(

b
√
c2+1

b+c−
√
c2+1

, b+c

b+c−
√
c2+1

)
.

By replacing we get immediately that F ∈ l. Similarly, E ∈ l. Hence,
also P ∈ EF . We are done. �

Extra (by Alexander Bogomolny).
It was observed by Dao Thanh Oai that the same arguments applies in
the case of internal bisectors:

PM + PN = PQ.

23. DIVIDE AND CONQUER IN CYCLIC SUMS

Leta, b, c > 0. Prove that∑
cycl

c
(4a

b2
+

3b

a2

)
≥ 12 + 3

∑
cycl

a

b

Proposed by Daniel Sitaru - Romania

Solution (by Soumava Chakraborty - Kolkata - India).
First of all, ∑

cycl

c
(4a

b2
+

3b

a2

)
=
∑
cycl

4ac

b2
+
∑
cycl

3bc

a2
=

= 4
∑
cycl

ab

c2
+ 3

∑
cycl

ab

c2
= 7

∑
cycl

ab

c2
.

By the AM-GM inequality ,

4
∑
cycl

ab

c2
≥ 4 · 3 3

√
ab

c2
·
bc

a2
·
ca

b2
= 12

3
√

1 = 12.
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On the other hand,

ab

c2
+
ab

c2
+
ca

b2
≥ 3

√
a3

c3
= 3

a

c
,

bc

a2
+
bc

a2
+
ab

c2
≥ 3

3

√
b3

a3
= 3

b

a
,

ca

b2
+
ca

b2
+
bc

a2
≥ 3

3

√
c3

b3
= 3

c

b
,

Adding these to (1) we get

7
∑
cycl

ab

c2
= 4

∑
cycl

ab

c2
+
∑
cycl

ab

c2
≥ 12 + 3

(a
b

+
b

c
+
c

a

)
.

�

Acknowledgment (by Alexander Bogomolny).
The problem above has been kindly posted at CutTheKnotMath facebook
page by Daniel Sitaru (from his book Math Accent), along with a solution
by Soumva Chakraborty.

24. A CYCLIC INEQUALITY IN THREE VARIABLES

Let a, b, c > 0 . Prove that

a3

b2(5a+ 2b)
+

b3

c2(5b+ 2c)
+

c3

a2(5c+ 2a)
≥

3

7

Proposed by Daniel Sitaru - Romania

Solution 1 (by Imad Zak - Saida - Lebanon).
Consider (x) = 1

x(5+2x)
+ 9

49
lnx− 1

7
.

f ′(x) =
(x− 1)(36x2 + 216x+ 245)

49x2(2x+ 5)2

f ′(x) < 0, for x < 1, and f ′(x) > 0, for x > 1. Since f(1) = 0, f(x) ≥ 0,

for x > 0. Now, let x = b
a
, y = c

b
, z = a

c
.xyz = 1. We have to show that∑

cycl

g(x) ≥
3

7

where (x) = 1
x(5+2x)

.∑
cycl

g(x) =
∑
cycl

(
f(x)−

9

49
lnx+

1

7

)

=
∑
cycl

(
f(x)

)
−

9

49
lnxyz +

3

7
=
∑
cycl

(
f(x)

)
+

3

7
≥ 0 +

3

7
.

Equality is attained for x = y = z = 1, i.e., a = b = c. �
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Solution 2 (by Kevin Soto Palacios - Huarmey - Peru).
By the Cauchy - Schwarz inequality,∑

cycl

a3

b2(5a+ 2b)

∑
cycl

[ab2(5a+ 2b)] ≥ (a2 + b2 + c2)2.

Thus, suffice it so show that∑
cycl

a3

b2(5a+ 2b)
≥

(a2 + b2 + c2)2∑
cycl[ab

2(5a+ 2b)]
≥

3

7

This is equivalent to

7(a2 + b2 + c2)2 ≥ 3
(
5
∑
cycl

(a2b2 + 2ab3 + 2bc3 + 2ca3)
)
,

which can be written as

6
∑
cycl

a4 +
∑
cycl

a4 + 14
∑
cycl

a2b2 ≥ 15
∑
cycl

(a2b2 + 6ab3 + 6bc3 + 6ca3).

With the AM-GM inequality, we see that

a4 + a4 + a4 + c4 ≥ 4a3c,

b4 + b4 + b4 + a4 ≥ 4b3a,

c4 + c4 + c4 + b4 ≥ 4c3b.

And summing up these (times 6) and a4 + b4 + c4 ≥ a2b2 + b2c2 + c2a2,
which we know is true, we obtain

a4 + b4 + c4 ≥ ab3 + bc3 + ca3.

�

Solution 3 (by Soumitra Mandal - nickname Diego Alvariz - Chandar Nagore - India).

By Radon’s Inequality, then the Cauchy - Schwarz inequality, and later,
the AM-GM inequality,∑

cycl

a3

b2(5a+ 2b)
≥
∑
cycl

(a+ b+ c)3

(
∑
cycl

√
bc det

√
5ab+ 2b2)2

≥
(a+ b+ c)3(√

(a+ b+ c)
∑
cycl(2b

2 + 5ab)
)2

≥
(a+ b+ c)3(√

(a+ b+ c)[2(a+ b+ c)2 + ab+ bc+ ca]
)2

≥
(a+ b+ c)3(√

(a+ b+ c)[2(a+ b+ c)2 + 1
3
(a+ b+ c)2]

)2 =
3

7

�
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Solution 4 (by Daniel Sitaru - Romania).

Define f : (0,∞)→ R, by f(x) = x3

2+5x
. Then

f ′(x) =
3x2(2 + 5x)− x3 · 5

(2 + 5x)2
=

6x2 + 10x3

(2 + 5x)2
> 0.

Thus the function is strictly increasing. So, for any positive x1, x2, x3,

f
(

3
√
x1x2x3

)
≤ f

(x1 + x2 + x3

3

)
Further,

f ′′(x) =
50x3 + 10x2 + 4x

(2 + 5x)4
> 0,

making the function convex. By Jensen’s inequality then,

f
(

3
√
x1x2x3

)
≤ f

(x1 + x2 + x3

3

)
≤

1

3

[
f(x1) + f(x2) + f(x3)

]
.

Set x1 = a
b
, x2 = b

c
, x3 = c

a
to obtain

f

(
3

√
a

b
·
b

c
·
c

a

)
≤

1

3

[
f
(a
b

)
+ f

(b
c

)
+ f

( c
a

)]
.

Explicitly,

1

7
= f(1) ≤

1

3

∑
cycl

(a
b
)3

2 + 5a
b

=
1

3

∑
cycl

a3

2b3 + 5ab2
.

Hence, the required inequality. �

Solution 5 (by Hung Nguyen Viet - Hanoi - Vietnam).
By the Cauchy - Schwarz inequality,∑

cycl

a3

b2(2b+ 5a)
=
∑
cycl

a4

ab2(5a+ 2b)

≥
(a2 + b2 + c2)2

5(a2b2 + b2c2 + c2a2) + 2(ab3 + bc3 + ca3)
.

It remains to prove that

7(a2 + b2 + c2)2 ≥ 15(a2b2 + b2c2 + c2a2) + 6(ab3 + bc3 + ca3).

This is equivalent to

7(a4 + b4 + c4) ≥ (a2b2 + b2c2 + c2a2) + 6(ab3 + bc3 + ca3).

Since, a4 + b4 + c4 ≥ a2b2 + b2c2 + c2a2, suffice it to show that

a4 + b4 + c4 ≥ ab3 + bc3 + ca3.

But this follows from summing up the inequalities below

a4 + b4 + b4 + b4 ≥ 4ab3,

b4 + c4 + c4 + c4 ≥ 4bc3,

c4 + a4 + a4 + a4 ≥ 4ca3.

The proof is complete. �
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Illustration

Acknowledgment (by Alexander Bogomolny).
The problem above has been posted on the CutTheKnotMath facebook
page by Daniel Sitaru. The problem came from his book Math Storm.
Solution 1 is by Imad Zak (Lebanon); Solution 2 is by Kevin Soto Pala-
cios (Peru); Solution 3 is by Diego Alvariz (India); Solution 4 is by Daniel
Sitaru (Romania); Solution 5 is by Hung Nguyen Viet (Vietnam).

25. AN INEQUALITY WITH ABSOLUTE VALUES

Prove that, for a, b, c ∈ (−1,1),∑
cycl

|a|+ |b|
1− c2

≥
∑
cycl

2|a|
1− bc

Proposed by Daniel Sitaru - Romania

Proof 1 (by Daniel Sitaru).
Since a ∈ (−1, 1), a2 < 1, 1− a2 > 0, 1

1−a2 > 0. Similarly, 1
1−b2 > 0

By the AM-GM inequality,

(1)
1

1− a2
+

1

1− b2
≥ 2

√
1

1− a2
·

1

1− b2
.
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However,

(1− ab)2 = 1− 2ab+ a2b2 ≥ 1− (a2 + b2)− a2b2 = (1− a2)(1− b2),

so that
1

(1− a2)(1− b2)
≥

1

(1− ab)2
. This, together with 1, yields

1

1− a2
+

1

1− b2
≥ 2

√
1

(1− ab)2
=

2

1− ab
So too,

|c|
1− a2

+
|c|

1− b2
≥

2|c|
1− ab

Similarly,

|a|
1− b2

+
|a|

1− c2
≥

2|a|
1− bc

|b|
1− c2

+
|b|

1− a2
≥

2|b|
1− ca

.

Adding the three gives the required inequality. The equality is achieved for

a = b = c.

�

Proof 2 (by Kevin Soto Palacios - Huarmey - Peru).
Using Bergström inquality and, subsequently, the obvious b2 + c2 ≥ 2bc,

1

1− b2
+

1

1− c2
≥

(1 + 1)2

2− b2 − c2
≥

4

2− 2bc
=

2

1− bc
so that

|a|
1− b2

+
|a|

1− c2
≥

2|a|
1− bc

.

Similarly,
|a|

1− c2
+
|b|

1− a2
≥

2|b|
1− ca

,

|c|
1− a2

+
|c|

1− b2
≥

2|c|
1− ab

.

Adding the three gives the required inequality. The equality is achieved for

a = b = c.

�

Acknowledgment (by Alexander Bogomolny)
Daniel Sitaru has kindly posted the above problem (from his book Math
Accent), with a solution (Proof 1), at the CutTheKnotMathfacebook
page. He later added another solution (Proof 2) by Kevin Soto Pala-
cios.
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26. PYTHAGOREAN PERIMETER THEOREM

Point H is the foot of the altitude in ∆ABC to the side BC.

Let p(∆) be the perimeter of triangle ∆. Prove that(
p(ABH)

)2
+
(
p(ACH)

)2
=
(
p(ABC)

)2
if ∠BAC = 90◦

Proposed by Miguel Ochoa Sanchez - Peru

Proof (by Claudia Nănuţi, Diana Trăilescu, Daniel Sitaru, Leo Giugiuc).
We choose H = (0, 0), A = (0, 1), B = (−b, 0), C = (c, 0), with b, c > 0.

We have BH = b, CH = c,AH = 1, BC = b+ c,AB =
√
b2 + 1,

AC =
√
c2 + 1. We need to prove that the conditions AC ⊥ AB is

equivalent to [
1 + (b+

√
b2 + 1)

]2
+
[
1 + (c+

√
c2 + 1)

]2
=

=
[
(b+

√
b2 + 1) + (c+

√
c2 + 1

]2
The latter is transformed into

1 + 2(b+
√
b2 + 1) + 1 + 2(c+

√
c2 + 1) = 2(b+

√
b2 + 1)(c+

√
c2 + 1),

or, 1 + (b+
√
b2 + 1) + (c+

√
c2 + 1) = (b+

√
b2 + 1)(c+

√
c2 + 1).

Introduce x, y > 1 such that b = x2−1
2x

and c = y2−1
2y

. Then

b +
√
b2 + 1 = x and c +

√
c2 + 1 = y. So that the identity at hand

becomes 1 + x+ y = xy.
To make it clear, the problem has been reduced to showing that the
condition AC ⊥ AB is euqivalent to bc = 1 which, in turn, is equivalent
to (x2 − 1)(y2 − 1) = 4xy, and this is algebraically manipulated into
(xy − 1)2 = (x+ y)2. Since x, y > 1, xy − 1 = x+ y, as required. �



44

27. THREE CIRCLES AND AREA

Points O1 and O2 lie on the diameter AB of circle (O) . Circle O1(r)
is tangent to (O) at A,O2(r) is tangent to (O) at B , for some r > 0.P
is on (O);PT is tangent to O1(r), PQ is tangent to O2(r).

Prove that PT ·PQ
2

= [∆O1PO2] , where [F ] denotes the area of shape F .

Proposed by Miguel Ochoa Sanchez - Peru

Solution by Claudia Nănuţi, Diana Trăilescu, Daniel Sitaru, Leo Giugiuc.
Assume (O) is described by the equation x2 + y2 = 1;A = (−1, 0), B =
(1, 0),
P = (cos t, sin t), with t ∈ (0, π). Obviously, O1 = (−1 + r, 0) and
O2 = (1− r, 0). From here

[∆O1PO2] =
1

2
O1O2 · sin t =

2− 2r

2
sin t = (1− r) sin t

On the other hand, by the Pythagorean theorem in triangles PO1T and
PCO1,

or the Power of a Point theorem,

O1P
2 − r2 = PT 2 = 2(1− r)(1 + cos t), or PT =

√
2(1− r)(1 + cos t).

Similarly, PQ =
√

2(1− r)(1− cos t).
It thus follows that PR · PQ = 2(1− r) sin t, as expected. �
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28. A ONE-SIDED INEQUALITY IN TRIANGLE

Prove that in any acute ∆ABC the following inequality holds:

BA′ · CB′ ·AC′ +BA′′ · CB′′ ·AC′′ +BA′′′ · CB′′′ ·AC′′′ <
3abc

8
,

where AA′, BB′, CC′ are the angle bisectors, AA′′, BB′′, CC′′ are the
altitudes, and AA′′′, BB′′′, CC′′′ the symmedians; a, b, c the side lengths
of triangle.

Proposed by Daniel Sitaru - Romania

Proof by (Daniel Sitaru - Romania).
In an acute triangle, the angle bisector, the altitude, and the symmedian
from the same vertex, all fall on the same side from the midpoint of the
opposite side.

For this reason, we have

BA′ <
a

2
, CB′ <

b

2
, AC ′ <

c

2
,

BA′′ <
a

2
, CB′′ <

b

2
, AC ′′ <

c

2
,

BA′′′ <
a

2
, CB′′′ <

b

2
, AC ′′′ <

c

2

Multiplying the rows and adding the results yields the required inequal-
ity. �
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Observations (by Alexander Bogomolny).
To clarify the inequalities, we make a couple of observations.

First, if M is the midpoint of AC, then A′ lies between A′′ and M .
Second, if D is the midpoint of the arcBC, opposite A and E is the
second intersection of AM with the circumcircle (ABC), then
∠A′AA′′′ = ∠DAE < ∠CAD = ∠BAD, implying that A′′′ is between B
and M .

Acknowledgment (by Alexander Bogomolny).
The problem has been kindly posted by Daniel Sitaru at the CutThe-
KnotMath facebook page. The problem came from his book Math Storm.

29. TWO CONDITIONS FOR A TRIANGLE TO BE EQUILATERAL

Consider two statements in ∆ABC:

P : ∃n ∈ Z∗,


a2 + (2n+ 1)a+ n2 = b

b2 + (2n+ 1)b+ n2 = c

c2 + (2n+ 1)c+ n2 = a

and

Q : ra + rb + rc = la + lb + lc

Prove that P ⇔ Q, i.e., that the two statements are equivalent.

Proposed by Daniel Sitaru - Romania

(The problem uses notations common in triangle geometry.)

Note (by Alexander Bogomolny).
Note that the proofs below in fact show more, viz., that both condi-
tions only hold for equilateral triangle, which makes them automatically
equivalent.
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Solution 1 (by Soumava Chakraborty - Kolkata - India).
Adding up the three equation in P ,∑

cycl

a2 + (2n+ 1)
∑
cycl

a+ 3n2 =
∑
cycl

a,

i.e., ∑
cycl

a2 + 2n
∑
cylc

a+ 3n2 = 0,

which we rewrite as

3n2 +

(
2
∑
cycl

a
)
n+

∑
cycl

a2 = 0.

Since, it is given the equation has a solution in integers, hence in reals,
the disciminant ∆ of this qudratic (in n) equation is not negative

∆ = 4

(∑
cycl

a

)2

−12
∑
cycl

a2 ≥ 0

This is equivalent to∑
cycl

a2 + 2
∑
cycl

ab− 3
∑
cycl

a2 ≥ 0,

which reduce to ∑
cycl

ab ≥
∑
cycl

a2,

but, by say, the Rearrangement inequality, we have∑
cycl

ab ≤
∑
cycl

a2,

implying that ∑
cycl

ab =
∑
cycl

a2.

From here ∑
cycl

(a− b)2 = 0,

so that a = b = c.
For Q, we have ∑

cycl

ra = 4R+ r ≥
∑
cycl

ma ≥
∑
cycl

la,

with equality only when a = b = c. �

Solution 2 (by Alexander Bogomolny).
For any n ∈ Z∗, the graph of the function y = f(x) = x2 +(2n+1)x+n2
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is tangent to the diagonal y = x for x = −n, otherwise being above the
diagonal.

Iterations xk+1 = f(xk) converge to the point of tangency, never forming
a 3 - loop. It follows, therefore, from the definition of P that it may only
hold when a = b = c.
Concerning Q, with 2p = a + b + c, we have, say, by the AM-GM
inequality,

la =
√
p(p− a)

2
√
bc

b+ c
≤
√
p(p− a) =

S√
(p− a)(p− c)

,

by Heron’s formula. (The equality is only for b = c.) On the other hand,

say ra = S
p−a . Thus,

la ≤
S√

(p− b)(p− c)
=
√
rbrc.

But then, by the Cauchy - Schwarz inequality, we get∑
cycl

la ≤
∑
cycl

√
rbrc ≤ ra + rb + rc,

where the first inequality becomes equality only for a = b = c while the
second is the equality for ra = rb = rc, which is the same. �

Acknowledgment (by Alexander Bogomolny).
The above problem from the Romanian Mathematical Magazine and a
solution (Solution 1 by Soumava Chakraborty, Kolkata, India) has been
kindly posted at the CutTheKnotMath facebook page by Daniel Sitaru.

30. AN ALL - INCLUSIVE INEQUALITY II

Prove that in an acute ∆ABC the following relationship holds(∑
cycl

√
ma

la

)(∑
cycl

√
ma

ha

)
≤

9R

2r
,
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where ma,mb,mc are the medians; ha, hb, hc the altitudes; la, lb, lc the
angle bisectors in triangle ABC,R and r its circumradius and

inradius, respectively.

Proposed by Daniel Sitaru - Romania

Solution 1 (by Soumava Chakraborty - Kolkata - India).

LHS ≤
(√∑

cycl

ma

√√√√∑
cycl

1

ha

)
≤
(∑
cycl

ma

)√√√√∑
cycl

1

ha

√√√√∑
cycl

1

ha
,

for la ≥ ha, etc, implying
∑ 1

la
≤
∑ 1

ha
. Thus,

LHS ≤
(∑
cycl

ma

)(∑
cycl

1

ha

)
=

(∑
cycl

ma

)( s
S

)
,

where s = a+b+c
2

is the semiperimeter, S the area of ∆ABC.
Using Bottema’s inequality, ma +mb +mc ≤ 4R+ r,

LHS =

(∑
cycl

ma

)( s
S

)
≤ (4R+ r)

( s
rs

)
=

4R+ r

r
.

Thus, suffice it to show that 4R+r
r
≤ 9R

2r
, but this is equivalent to

8R+ 2r ≤ 9R, i.e., Euler’s inequality R ≥ 2r. �

Solution 2 (by Daniel Sitaru - Romania).
Let AA′ = ma;OA′ ⊥ BC;O - center of the circumcircle (ABC).

In ∆ABC,

AA′ ≤ A′O + OA

It follows that

ma ≤ R cosA+R = R(cosA+ 1) = R
(
2 cos2

A

2
− 1 + 1

)
= 2R cos2

A

2
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Further,

ma

ha
≤

2R cos2 A
2

ha
=

2Rp(p− a)

bc · 2S
a

=
Rap(p− a)

bcS
=

=
Ra2p(p− a)

abcS
=
Ra2p(p− a)

4RS2
=
ap(p− a)

4S2
=
a2p(p− a)

4rpS
=

=
a2(p− a)

4r2p
.

Adding to that two analogous inequalities,∑
cycl

ma

ha
≤
∑
cycl

a2(p− a)

4r2p
=

1

4r2p

(
p
∑

a2 −
∑

a3).

We are going to use the following two identities:∑
cycl

a2 = 2s2 − 8Rr − 2r2,
∑
cycl

a3 = s(2s2 − 12Rr − 6r2).

With these,∑ ma

ha
≤

1

4r2p

(
p(2p2 − 8Rr − 2r2)− p(2p2 − 12Rr − 6r2)

)
=

1

4R2
(2p2 − 8Rr − 2r2 − 2p2 + 12Rr + 6r2)

=
1

4R2
(4Rr + 4r2) =

R

r
+ 1.

For the record,

(1)
∑
cycl

ma

ha
≤
R

r
+ 1.

From that and la ≥ ha, etc., also

(2)
∑
cycl

ma

la
≤
R

r
+ 1.

By the Cauchy - Schwarz inequality, using 1,

(3)

(∑√
ma

ha
· 1
)2

≤
(∑ ma

ha

)
(12 + 12 + 12) = 3

∑ ma

ha
≤ 3

(R
r

+ 1
)
.

Using 2, we similarly get

(4)

(∑√
ma

la
· 1
)2

≤ 3
(R
r

+ 1
)

The product of 3 and 4, along with the Euler inequality, R ≥ 2r yields
the required inequality:(∑√

ma

la

)2(∑√
ma

ha

)2

≤ 9
(R+ r

r

)2
≤ 9

(
R+ R

2

r

)2
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and, finally, (∑√
ma

la

)(∑√
ma

ha

)
≤ 3

3R
2

r
=

9R

2r
.

�

Solution 3 (by Kevin Soto Palacios - Huarmey - Peru).
We shall use the following facts:

(1) la ≥ ha, lb ≥ hb, lc ≥ hc
and

(2)
R

2r
≥
ma

ha
,
R

2r
≥
mb

hb
,
R

2r
≥
mc

hc

So we have

(A)

√
ma

ha
+

√
mb

hb
+

√
mc

hc
≤ 3

√
R

2r

and, therefore, also

(B)

√
ma

la
+

√
ma

lb
+

√
ma

lc
≤ 3

√
R

2r

The product of A and B is exactly the required inequality. �

Solution 4 (by Kevin Soto Palacios - Huarmey - Peru).
We know that

la ≥ ha, lb ≥ hb, lc ≥ hc,

ma +mb +mc ≤ 4R+ r ≤
9R

2
,

1

ha
+

1

hb
+

1

hc
=

1

r
.

By the Cauchy - Schwarz inequality,(√
ma

ha
+

√
mb

hb
+

√
mc

hc

)2

≤ (ma +mb +mc)
( 1

ha
+

1

hb
+

1

hc

)
.

It follows that √
ma

ha
+

√
mb

hb
+

√
mc

hc
≤
√(9R

2

)√(1

r

)
.

It so, also √
ma

la
+

√
mb

lb
+

√
mc

lc
≤
√(9R

2

)√(1

r

)
The product of the two gives the required inequality. �

Acknowledgment (by Alexander Bogomolny).
The problem has been offered by Daniel Sitaru at the CutTheKnotMath
facebook page; solutions added via comments and private communica-
tion. Solution 1 is by Soumava Chakraborty; Solution 2 is by Daniel
Sitaru; Solution 3 and 4 are by Kevin Soto Palacios. The problem came
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from Dan’s book Math Power and has been published at the Romanian
Mathematical Magazine.

31. A CYCLING INEQUALITY WITH INTEGRALS

Prove that, fora, b, c > 2,

2bcΩ(a) + 2caΩ(b) + 2abΩ(c) < a2 + b2 + c2

where Ω(t) =

∫ 1

0

1− x2

1 + tx2 + x4
dx

Proposed by Daniel Sitaru - Romania

Proof (by Ravi Prakash - New Delhi - India).
Note that

Ω′(t) =

∫ 1

0

(1− x2)(−1)x2

(1 + tx2 + x4)2
dx < 0,

for t ≥ 2, making Ω(t) strictly decreasing on [2,∞). Further

Ω(2) =

∫ 1

0

1− x2

1 + 2x2 + x4
dx =

∫ 1

0

[ 2

(1 + x2)2
−

1

1 + x2

]
dx

But
π

4
=

∫ 1

0

dx

1 + x2

=
x

1 + x2

∣∣∣1
0

+

∫ 1

0

x(2x)

(1 + x2)2
dx =

1

2
+

∫ 1

0

2(x2 + 1)− 2

(1 + x2)2
dx

=
1

2
+
π

4
− Ω(2),

implying Ω(2) = 1
2

such that, for t > 2, 0 < Ω(t) < 1
2
. It follows that

2bcΩ(a) + 2caΩ(b) + 2abΩ(c) < bc+ ca+ ab ≤

≤
b2 + c2

2
+
c2 + a2

2
+
a2 + b2

2
= a2 + b2 + c2.

�

Acknowledgment (by Alexander Bogomolny).
Daniel Sitaru has kindly posted the above problem form the Romanian
Mathematical Magazine (and his book Math Accent), with a proof by
Ravi Prakash (India), at the CutTheKnotMath facebook page.
Note that the penultimate step in the proof could be shortened by notic-
ing that ∫

1− x2

(1 + x2)2
dx =

x

1 + x2
+ C
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32. A CYCLIC INEQUALITY IN TRIANGLE

Prove that in any ∆ABC,∑∑∑
cycl

a3(2s− a)

b(2s− b)
≥

27a2b2c2

s2
,

wheres =
a+ b+ c

2
, the semiperimeter of ∆ABC.

Proposed by Daniel Sitaru - Romania

Proof 1 (by Kevin Soto Palacios - Huarmey - Peru).

By the AM-GM inequality,

(a+ b+ c)2

4

∑∑∑
cycl

a3(2s− a)

b(2s− b)
≥

9 3
√

(abc)2

4
· 3

√∏
cycl

a2(2s− a)2.

Thus, suffice it to show that

(A)
9 3
√

(abc)2

4
· 3 3

√∏
cycl

a2(2s− a)2 ≥ 27a2b2c2.

Note that

(B) (2s− a)(2s− b)(2s− c) = (a+ b)(b+ c)(c+ a) ≥ 8abc.

Combining A and B we get

9 3
√

(abc)2

4
· 3

√∏
cycl

a2(2s− a)2 ≥
9 3
√

(abc)2

4
· 3 3
√

(abc)2 · 64(abc)2

= 27a2b2c2.

�

Proof 2 (by Soumava Chakraborty - Kolkata - India).

By the AM-GM inequality,

LHS ≥ 3 3
√
a2b2c2(a+ b)2(b+ c)2(c+ a)2.

Suffice it to show that ∏∏∏
cycl

a2(a+ b)2 ≥
729a6b6c6

s6

We have a sequence of equivalent statements:∏∏∏
cycl

(a+ b) ≥
27(a+ b+ c)2

s3
=

432R2r2

s
,

2abc+
∏∏∏
cycl

ab(2s− c) ≥
432R2r2

s
,2s2

∑∑∑
cycl

ab− 4Rr2 ≥ 432R2r2,

s2(s2 + 4Rr+ r2)− 2Rrs2 − 216R2r2 ≥ 0
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To this we’ll apply Gerretsen’s inequality s2 ≥ 16Rr− 5r2:

s2(s2 + 4Rr+ r2)− 2Rrs2 − 216R2r2 ≥

≥ (16Rr− 5r2)2 + (16Rr− 5r2)(2Rr+ r2)− 216R2r2.

Suffice it to show that:

(16Rr− 5r2)2 + (16Rr− 5r2)(2Rr+ r2)− 216R2r2 ≥ 0.

But this is equivalent to 36R2 − 77Rr+ 10r2 ≥ 0, or,
(R−2r)(36R−5r) ≥ 0, which is true due to Euler’s inequality R ≥ 2r. �

Proof 3 (by Alexander Bogomolny).

By the AM-GM inequality, LHS ≥ 3 3
√
a2b2c2(a+ b)2(b+ c)2(c+ a)2.

Suffice it to show that ∏∏∏
cycl

a2(a+ b)2 ≥
33a6b6c6

s6
.

This is equivalent to

(*) (a+ b+ c)3
∏∏∏
cycl

(a+ b) ≥ 63a2b2c2.

In this form the inequality holds for a, b, c ≥ 0 , not necessarily the sides
of a triangle. Now, (a+ b+ c)3 ≥ 33abc, whereas

a+b ≥ 2
√
ab, b+c ≥ 2

√
bc, c+a ≥ 2

√
ca . Multiplying the four gives * �

Acknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly posted the above problem from his book Math
Accent, with two proofs - one (Proof 1) by Kevin Soto Palacios (Peru),
the other (Proof 2) by Soumava Chakraborty (India), at the CutThe-
KnotMath facebook page.

33. A CYCLCIC INEQUALITY IN TRIANGLE II

Prove that in any ∆ABC,

√
abc

( a2

√
b

+
b2
√
c

+
c2
√
a

)2
≥ 16(

√
a+
√
b+
√
c)S2,

Proposed by Daniel Sitaru - Romania

Proof 1 (by Soumava Pal - Kolkata - India).

WLOG, assume a ≥ b ≥ c. Then a2 ≥ b2 ≥ c2 but 1√
a
≤ 1√

b
≤ 1√

c

. First employing the Rearrangement inequality and then the AM-GM
inequality, ∑∑∑

cycl

a2

√
b2
≥
∑∑∑
cycl

a2

√
a

= a
3
2 + b

3
2 + c

3
2 ≥ 3

√
abc
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Thus,

(1)
∑∑∑
cycl

a2

√
b
≥ 3
√
abc.

Using the Rearrangement inequality the second time and then the
Chebyshev’s inequality,∑∑∑
cycl

a2

√
b
≥
∑∑∑
cycl

a2

√
a

= a
√
a+ b

√
b+ c

√
c >

1

3
(a+ b+ c)(

√
a+
√
b+
√
c)

So that

(2)
∑∑∑
cycl

a2

√
b
≥

1

3

(∑∑∑
cycl

a
)(∑∑∑

cycl

√
a
)

Multiplying 1 and 2, we get

(3)
√
abc

(∑∑∑
cycl

a2

√
b

)
≥ (abc)(a+ b+ c)(

√
a+
√
b+
√
c).

Define x = a+ b− c, y = b+ c−a, z = c+a− b. Then x+ y ≥ 2
√
xy and

b ≥√xy. Similarly, a ≥
√
xz and c ≥√yz. It follows that abc ≥ xyz.

Thus we may continue 3:

√
abc

(∑∑∑
cycl

a2

√
b

)
≥ (abc)(a+ b+ c)(

√
a+
√
b+
√
c) ≥

xyz(a+ b+ c)(
√
a+
√
b+
√
c) = 16S2(

√
a+
√
b+
√
c,

as required. �

Proof 2 (by Soumitra Mandal - nickname Diego Alvariz - Chandar Nagore - India).

Since (x+ y)(y+ z)(z+ x) ≥ 8xyz,

√
abc

(∑∑∑
cycl

a2

√
b

)2

≥ 3 3

√√√√∏
cycl

a2

√
b

(∑∑∑
cycl

a2

√
b

)
√
abc = 3abc

(∑∑∑
cycl

a2

√
b

)

≥
(∏∏∏
cycl

(a+ b+ c)

)
3(a+ b+ c)2∑

cycl

√
a(∑∑∑

cycl

√
a

)
(a+ b+ c)

(∏∏∏
cycl

(a+ b− c)
)

= (
√
a+
√
b+
√
c)16S2.

�

Acknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly posted the above problem form his book Math
Accent, with two proofs - one (Proof 1) by Soumava Pal, the other (Proof
2) by Diego Alvariz, at the CutTheKnotMath facebook page.
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34. DAN SITARU’S INEQUALITY WITH TANGENTS

Prove that in any∆ABC,∑∑∑
cycl

3
√

tanA
3
√

tanB(
3
√

tanA+
3
√

tanB) ≤ 2 tanA tanB tanC

Proposed by Daniel Sitaru - Romania

Proof 1 (by Daniel Sitaru - Romania).

The starting point is Heinz’s inequality :

For x, y > 0, α ∈ [0,1], x1−αyα + xαy1−α ≤ x+ y.

We apply Heingz’s inequality with α = 1
3

x
2
3y

1
3 + x

1
3y

2
3 ≤ x+ y

and set x = tanA and y = tanB to obtain
3
√

tanA
3
√

tanB(
3
√

tanA+
3
√

tanB) ≤ tanA+ tanB

Similarly we get
3
√

tanA
3
√

tanB(
3
√

tanA+
3
√

tanB) ≤ tanA+ tanB
3
√

tanC
3
√

tanA(
3
√

tanC +
3
√

tanA) ≤ tanC + tanQ.

yields the required inequality. �

Proof 2 (by Ritesh Dutta - India).

Let tan
1
3 (A) = A; tan

1
3 (B) = b , and tan

1
3 (C) = c. In any triangle

A+B +C = a3 + b3 + c3 = a3b3c3.
After the substitution we have to prove that∑∑∑

cyclab(a+ b) ≤ 2a3b3c3

Now, ∑∑∑
cycl

ab(a+ b) ≤
∑∑∑ a2 + b2

2
(a+ b) =

∑∑∑
cycl

a3 +
∑∑∑
cycl

ab(a+ b)

2

It follows that ∑∑∑
cycl

ab(a+ b) ≤ 2
∑∑∑
cycl

a3 = 2a3b3c3

�

Acknowledgment (by Alexander Bogomolny)
Dan Sitaru has kindly posted the problem, with a solution (Proof 1), at
the CutTheKnotMath facebook page. Proof 2 is by Ritesh Dutta (India).
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35. VECTOR ALGEBRA IN TETRAHEDRON

Let ABCDbe a tetrahedron where: AC =
√

11;CD = 3;AD =
√

14;

AB =
√

3;BC = 2;BD =
√

13.

Prove that: m(∠∠∠(AB,CD)) ≥ 90◦.

Proposed by Daniel Sitaru - Romania

Proof (by Daniel Sitaru - Romania).

We place the origin at D and (yOz) ≡ (BCD). It follows that
D = (0,0,0) and C = (0,3,0) because CD = 3.
Take B = (0, a, b);B ∈ (yOz), and (c, d, e), a, b, c, d, e ∈ R. Then, via the
Pythagorean theorem,

BC = 2

AC =
√

11

BD =
√

13

AD =
√

14

AB =
√

3

⇒



√
(a− 3)2 + b2 = 2√
c2 + d2 + e2 =

√
14√

a2 + b2 =
√

13√
c2 + (d− 3)2 + e2 =

√
11√

c2 + (d− a)2 + (b− e)2 =
√

3

√
(a− 3)2 + b2 = 2√
c2 + d2 + e2 =

√
14√

a2 + b2 =
√

13√
c2 + (d− 3)2 + e2 =

√
11√

c2 + (d− a)2 + (b− e)2 =
√

11

⇒



a2 − 6a+ 9 + b2 = 4

c2 + d2 + e2 = 14

a2 + b2 = 13

c2 + (d− 3)2 + e2 = 11

c2 + (d− a)2 + (b− e)3 = e

�

Further, 
13 + 9− 6a = 4⇒ a = 3

b2 = 4⇒ b = 2

c2 + d2 − 6d+ 9 + e2 = 11⇒ d = 2

c2 + 1 + (2− e)2 = 3⇒ e = 3; c = 1
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Which is to say that B = (0,3,2) and A = (1,2,3). It follows (in custom-

ary notations) that
−→
AB = −i+j−k and

−−→
CD = −3j so that

−→
AB·
−−→
CD = −3,

implying cos∠(
−→
AB,
−−→
CD) < 0, so that ∠∠∠(

−→
AB,
−−→
CD) ≥ 90◦.

Remark (by Greǵoire Nicollier)
A proof without any computation! Let C∗ and D∗ be the orthogonal
projections of C and D on the line AB. The angle between the vectors
AB and C ∗D∗ have opposite directions. This is here clearly the case
(without any sketch!) as ∆ABC is obtuse at B whereas ∆ABD is almost
isosceles.

36. AN ELEMENTARY INEQUALITY BY NON-ELEMTARY
MEANS

Prove that, for a > 0,

12(a sina+ cosa− 1)2 ≤ 2a4 + a3 sin 2a.

Proposed by Daniel Sitaru - Romania

Proof (by Daniel Sitaru - Romania).

By the Cauchy - Schwarz inequality,(∫ a

0

x cosxdx

)2

≤
(∫ a

0

x2dx

)(∫ a

0

cos2 xdx

)
.

We continue by evaluating integrals:(
x sinx

∣∣∣a
0
−
∫ a

0

sinx

)2

≤
a3

3

∫ a

0

1 + cos 2x

2
dx

(a sin a+ cos a− cos 0)2 ≤
a3

6

(
x
∣∣∣a
0

+
1

2
sin 2x

∣∣∣a
0

)
.

6(a sin a+ cos a− 1)2 ≤ a3
(
a+

1

2
sin 2a

)
.

12(a sina+ cosa− 1)2 ≤ 2a4 + a3 sin 2a.

�

Acknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly communicated in private message the above
problem and its solutions. There is little doubt that the expression
a sina+ cosa betrays the integral origins of the problem. However, the
inequality itself is quite elementary looking which makes one curious
whether it has a more elementary solution that does not invoke calcu-
lus.
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37. INTEGRAL OF A PIECE - WISE FUNCTION

For a, b, c ∈ (0,∞), a < b < c;f : [0, a]→ [0, b] and g : [0, b]→ [0, c]

both continuous, surjective and strictly increasing functions.

Prove that
1

2

∫ a

0

(g ◦ g)2(x)dx+
1

a

∫ c

0

(f−1 ◦ g−1)2(x)dx ≤ ac.

Proposed by Daniel Sitaru - Romania

Solution.

First of all, note that h = g◦f : [0, a]→ [0, c] is a continuos, surjective and
strictly increasing function. In particular, h(a) = c and h−1 = f−1 ◦g−1.
We thus have to prove that

1

c

∫ a

0

h2(x)dx+
1

a

∫ c

0

(h−1)2(x)dx ≤ ac.

Next we observe that h(x) ≤ c and h−1(x) ≤ a and deduce that

1

c

∫ a

0

h2(x)dx+
1

a

∫ c

0

(h−1)2dx ≤
∫ a

0

h(x)dx+

∫ c

0

h−1(x)dx.

To this we apply the extreme case of Young’s inequality that may be
called Young’s identity. The latter is illustrated by the diagram below:

The red represents
∫ a
0
h(x)dx and the orange are represents

∫ c
0
h−1(x)dx.

It follows that
∫ a
0
h(x)dx+

∫ c
0
h−1(x)dx = ac.
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Acknowledgment (by Alexander Bogomolny)

The problem from the Romanian Mathematical Magazine (Problem
44) has been posted by Daniel Sitaru at the CutTheKnotMath facebook
page. Leo Giugiuc and Daniel Sitaru commented with practically iden-
tical solutions. �

38. TWO - TRIANGLE INEQUALITY II

Given two triangles: ABC and A′B′C′, prove that

a+ b+ c

3
√

3R
≤

cos A
2

+ cos B
2

+ cos C
2

cos A
′

2
+ cos B

′

2
+ cos C

′

2

≤
3
√

3R′

a′ + b′ + c′

Proposed by Daniel Sitaru - Romania

Proof (by Kevin Soto Palacios - Huarmey - Peru).

We shall prove only the left inequality, as the right one is obtained from
that by swapping A with A′, a with a′, etc.
Observe that sinA+ sinB = 2 sin A+B

2
cos A−B

2
≤ 2 cos C

2
, implying that

sinA+ sinB + sinC ≤ cos
A

2
+ cos

B

2
+ cos

C

2
It follows by the Law of Sines that

a+ b+ c

2R
= sinA+ sinB + sinC ≤ cos

A

2
+ cos

C

2
+ cos

C

2
In addition, we know that

3
√

3

2
≥ cos

A′

2
+ cos

B′

2
+ cos

C′

2
Dividing one by another we obtain

a+ b+ c

3
√

3R
≤

cos A
2

+ cos B
2

+ cos C
2

cos A
′

2
+ cos B

′

2
+ cos C

′

2

�

Acknowledgment (by Alexander Bogomolny)
Dan Sitaru has kindly posted the above problem, with two proofs by
Kevin Soto Palacios (Peru), at CutTheKnotMath facebook page.

39. INEQUALITY WITH POWERS AND RADICALS

Prove that, for positive reala, b, cwe have:∑
cycl

6
√
ab2c3 ≥

∑
cycl

30
√
a9b10c11

Proposed by Daniel Sitaru - Romania
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Proof 1 (by Dang Thanh Tung - Vietnam).

The inequality is equivalent to

1
3
√
abc

∑
cycl

6
√
ab2c3 ≥

1
3
√
abc

∑
cycl

30
√
a9b10c11

which translates into ∑
cycl

6

√
a

b
≥
∑
cycl

30

√
a

b

Defining x = 30

√
a
b
, etc., the problem reduces to showing that∑

cycl

x5 ≥
∑
cycl

x

provided x, y, z > 0 and xyz = 1. The AM-GM inequality, yields

x5 + 1 + 1 + 1 + 1 > 5x,

y5 + 1 + 1 + 1 + 1 ≥ 5y,

z5 + 1 + 1 + 1 + 1 ≥ 5z.

Summing up shows that∑
cycl

x5 ≥ 5
∑
cycl

x− 12 =
∑
cycl

x+ 4

(∑
cycl

x− 3

)

=
∑
cycl

x+ 4

(∑
cycl

x− 3 3

√∏
cycl

x

)
≥
∑
cycl

x

because, by AM-GM inequality, x + y + z ≥ 3 3
√
xyz. The equality is

attained when x = y = z = 1, i.e., when a = b = c. �

Proof 2 (by Ravi Prakash - New Delhi - India).

By the AM-GM inequality,

7(ab2c3)
1
6 + 4(a3bc2)

1
6 + 4(a2b3c)

1
6 ≥ (a7b14c21a12b4c8a8b12c4)

1
6×15

≥ 15(a27b30c33)
1
90

= 15(a9b10c11)
1
30 .

Similarly,

4(ab2c3)
1
6 + 7(a3bc2)

1
6 + 4(a2b3c)

1
6 ≥ 15(a11b9c10)

1
30 ,

4(ab2c3)
1
6 + 4(a3bc2)

1
6 + 7(a2b3c)

1
6 ≥ 15(a10b11c9)

1
30 .

Adding the three and dividing by 15 gives the required inequality. �

Proof 3 (by Alexander Bogomolny).

This is also a direct consequence of Muirhead’s inequality. Indeed, let

α =
{

3
6
, 2
6
; 1
6

}
and β =

{
11
30
, 10
30
, 9
30

}
. Then α majorizes β which imediately

implies the given inequality. �
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Acknowledgment (by Alexander Bogomolny)
The problem from his book Math Accent has been posted by Dan Sitaru
at the CutTheKnotMath facebook page. He also added two solutions.
Proof 1 by Dang Thanh Tung and Proof 2 by Ravi Prakash.

40. BROCARD POINT AND A RELATION OF CIRCUMRADII

Ω is the first Brocard point of ∆ABC.Ra,Rb,Rc are the circumradii of

triangles ΩBC,ΩCA,ΩAB, respectively.

Prove that RaRbRc = R3,

where R is the circumradius of ∆ABC.

Proposed by Mehmet Sahin - Ankara - Turkey

Proof 1 (by Daniel Sitaru - Romania).

Let ω denote the Brocard angle. Then

c

2 sin(π − ω − (B − ω))
=

2R sinC

2 sinB
.

Two more relations are obtained in the same manner. The product of
the three solves the problem:∏∏∏

cycl

Ra =
∏∏∏
cycl

R sinC

sinB
= R3.

�

Proof 2 (by Leonard Giugiuc - Romania).

WLOG, assume A = (−2u,0),B = (2v,0),C = (0,2). It’s well known
that R2 = (1 + u2)(1 + v2). Let’s find Ra first. The midpoint of AB is
(v− u,0); the perpendicular at B to BC has the equation vx− y = 2v2,
so that the center of (ΩBC) is at (v− u, v(u+ v)), implying

R2
a = (u+ v)2(1 + v2). Similarly, R2

b = (1+u2)(1+v2)2

(u+v)2
and Rc = (1 + u2)2.

Clearly, RaRbRc = R3. �

Proof 3 (by Mehmet Sahin - Ankara - Turkey).

Clearly, ∠BΩC = 180◦,∠CΩA = 180◦ −A,∠AΩB = 180◦ −B. Using the
Law of Sines in triangles in ΩBC,ΩCA,ΩAB, we get

a

sin(180◦ − C)
= 2Ra,

b

sin(180◦ −A)
= 2Rb,

c

sin(180◦ −B)
= 2Rc,
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so that
a

sinC
= 2Ra,

b

sinA
= 2Rb,

c

sinB
= 2Rc.

In ∆ABC,R = a
2 sinA

= b
2 sinB

= c
2 sinC

.
Combining the finds,

RaRbRc =
a

2 sinA
·

b

2 sinB
·

c

2 sinC
= R3,

as desired.

Acknowledgment (by Alexander Bogomolny)
The problem has been kindly posted at the CutTheKnotMath facebook
page by Mehmet Sahin (Turkey). Proof 1 is by Daniel Sitaru; Proof 2
is by Leo Giugiuc; Proof 3 is by Mehmet Sahin. �

41. AN INTEGRAL INEQUALITY FROM THE RMM

If f : [0,1]→ (0,∞), f derivable, f ′ continuous,

f ′(x) = f ′(1− x),∀x ∈ [0,1] then:∫ 1

0

f(x)dx ≥
√
f(0) · f(1)

Proposed by Daniel Sitaru - Romania

Proof 1 (by Safal Das Biswas - India).

The condition f ′(x) = f ′(1−x)impliesf(x)+f(1−x) = C, a constant, for
x ∈ [0,1]. This is a kind of situation that has been considered elsewhere
on three different occasions.

If I =

∫ 1

0

f(x)dx, then

2I =

∫ 1

0

(
f(x) + f(1− x)

)
dx = C = f(x) + f(1− x),

for any x ∈ [0,1]. In particular, with x = 0,2I = f(0) + f(1). It then
follows by the AM-GM inequality that

I =
f(0) + f(1)

2
≥
√
f(0)f(1)

�

Proof 2 (by Soumitra Mandal - nickname Diego Alvariz - Chandar Nagore -India).

With I =

∫ 1

0

f(x)dx, and integrating by parts,

I =
[
xf(x)

]1
0
−
∫ 1

0

xf ′(x)dx = f(1)−
∫ 1

0

xf ′(x)dx
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f(1) +

∫ 1

0

xf ′(1− x)d(1− x)

f(1) +

∫ 1

0

f ′(1− x)d(1− x)−
∫ 1

0

(1− x)f ′(1− x)d(1− x)

f(1) +

∫ 1

0

f ′(x)dx−
∫ 0

1

xf ′(x)dx

= f(1) + f(0) +

∫ 1

0

[
d

dx
(x)

∫ 1

0

f ′(x)dx

]
dx

f(1) + f(0)−
∫ 1

0

f(x)dx = f(1) + f(0)− I,

implying I =
f(0) + f(1)

2
≥
√
f(0)f(1)

�

42. A CYCLING INEQUALITY WITH INTEGRALS II

Prove that, for a, b, c ≥ 0,

Ω(a, b, c) + Ω(b, c, a) + Ω(c, a, b) ≤ 1,

where Ω(p, q, r) =

∫ 1

0

xp

1 + xp + xq+r
dx.

Proposed by Daniel Sitaru - Romania

Proof (by Daniel Sitaru - Romania).

Introduce u = xa, v = xb,w = xc. For x ∈ [0,1], u, v,w ∈ [0,1], such
that also 1− u,1− v,1− w ∈ [0,1]. From here, say (1− u)(1− v) ≥ 0,
implying 1 + uv ≥ u+ v and, subsequently,

1 +w+ uv ≥ u+ v+w.

Therefore,
1

1 + w + uv
≤

1

u+ v + w

and
w

1 + w + uv
≤

w

u+ v + w
Similarly, u

1+u+uw
≤ u

u+v+w
and v

1+v+wu
≤ v

u+v+w . Adding the three up

we obtain ∑
cycl

u

1 + u+ vw
≤
∑
cycl

u

u+ v + w
= 1.

Taking integral form 0 to 1 we obtain the required inequality. Equality
is only possible for a = b = c = 0. �

Acknowledgment (by Alexander Bogomolny)
Daniel Sitaru has kindly posted the above problem from his book Math
Accent, at the CutTheKnotMath facebook page. He later communicated
privately the solution above.
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43. LEO’S LEMMA, SECOND APPLIACATION

Assume in ∆ABC, points M and N are on BC in this order B,M,N,C.

Then (AB −AC)(BM −CN) ≥ 0.

Proposed (by Daniel Sitaru - Romania)

Proof (by Alexander Bogomolny).

Assume, without loss of generality (http://www.cut-the-knot.org/blue/
WLOG.shtml), that AB > AC. Then ∠∠∠ACB > ∠∠∠ABC.
Since ∆MAN is isosceles, ∠∠∠AMB = ∠∠∠ANC, implying that
∠∠∠BAM > ∠∠∠CAN . Obviously, ∠∠∠BAM + ∠∠∠CAN < π, implying by Leo
Giugiuc’s Lemma
http://www.cut-the-knot.org/arithmetic/algebra/LeosLemma.shtml), that

sin∠BAM > sin∠CAN.

Set δ = ∠∠∠AMB = ∠∠∠ANC. By the Law of Sines (http://www.cut-the-knot.
org/pythagoras/cosine2.shtml), in triangles ABM and ACN , and due to
the assumption AB > AC,

BM

sin∠BAM
=
AB

sin δ
>
AC

sin δ
=

CN

sin∠CAN
such that

BM =
sin∠BAM

sin∠CAN
CN > CN

because, as we’ve seen, AB > AC implies sin∠BAM > sin∠CAN .
Thus, in this case, indeed, (AB−AC)(BM−CN) ≥ 0. The assumption
AB < AC - by symmetry - leads to the same result. The case AB = AC
is even more straightforward. �

http://www.cut-the-knot.org/blue/WLOG.shtml
http://www.cut-the-knot.org/blue/WLOG.shtml
http://www.cut-the-knot.org/arithmetic/algebra/LeosLemma.shtml
http://www.cut-the-knot.org/pythagoras/cosine2.shtml)
http://www.cut-the-knot.org/pythagoras/cosine2.shtml)
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44. AN EQUATION IN DETERMINANTS

Dan Sitaru has posted the following problem and its solution at the
CutTheKnotMath facebook page:

Solve in M4(Z) the equation: det(X4 + I4) = 2013

Proposed by Daniel Sitaru - Romania

Solution (by Alexander Bogomolny).

Observe that X4 + I4 = (X2 −X
√

2 + I4)(X2 +X
√

2 + I4) from which

det(X4 + I4) = (m− n
√

2)(m+ n
√

2) = m2 − 2n2;m,n ∈ Z.
Now, m2 − 2n2 = 2013 is same as m2 − 2013 = 2n2. The latter implies

m ∈ 2Z + 1, and consequently m2 ∈ 8Z + 1. We’ll show that is
impossible by considering two case.

If n ∈ 2Z then 2n2 ∈ 8Z and m2 − 2n2 ∈ 8Z + 1 which means that
2013 ∈ 8Z + 1. But this is not so because 2013 mod 8 ≡ 5.

If n ∈ 2Z + 1 then n2 ∈ 8Z so that m2 − 2n2 ∈ 8Z + 7, or 2013 ∈ 8Z + 5,
but this is as impossible as the preavious case.

Thus the equation has no solutions.

�

Remark (by Alexander Bogomolny)
The problem can be stated as a scaler or a polynomial equation, with
only minor typographical changes.
The problem poses the question for the year 2013. The above solution
will work for any year residue of division by 8 is neither 1 nor 7. Thus it
will not work out (as it was pointed out in the comments) for 2015; there
is enough time to investigate whether the matrix equation has or does
not have a solution for a coming year. The scalar equivalent, obviously,
does not dose have a solution in integers for most of the years.

45. AN INNOVATIVE RECURRENCE

Assume a1, a2, a3, a4 ∈ N and aan = n+ 4.

Find a2012 + a2013 + a2014 + a2015.

Proposed by Daniel Sitaru, Leonard Giugiuc - Romania

Solution by proposers, comments by Alexander Bogomolny:

Let’s use functional notations: f(n) = an where f : N→ N.

Then f(f(n)) = n+ 4. The trick is to express f(f(f(n))) in two ways:

one is to replace n with f(n), the other is to apply f to both sides

of the identity:

f(f(f(n))) = f(n) + 4

f(f(f(n))) = f(n+ 4).

https://www.facebook.com/photo.php?fbid=1410419435954529&set=o.96389292832&type=1&theater
https://www.facebook.com/photo.php?fbid=1410419435954529&set=o.96389292832&type=1&theater
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From this f(n+ 4) = f(n) + 4.

Repeating the steps, f(n+4) = f(n)+4 = f(n−4)+2·4 = f(n−8)+3·4,
etc., f(n) = f(n− 4k) + 4k, k a positive integer. In particular,

f(2012) = f(0) + 2012, f(2013) = f(1) + 2012,

f(2014) = f(2) + 2012, f(2015) = f(3) + 2012.

In the originals terms

a2012 + a2013 + a2014 + a2015 = a0 + a1 + a2 + a3 + 4 · 2012.

In general, an =


a0 + n, n = 4k,

a1 + n− 1, n = 4k + 1,

a2 + n− 2, n = 4k + 2,

a3 + n− 3, n− 4k + 3.

This could be expressed with a single formula: an = an mod 4 + 4·
∣∣∣n
4

∣∣∣.
�

46. TANGENTIAL CHAOS

Solve in real numbers:
yx4 + 4x3 + y = 6x2y + 4x

zy4 + 4y3 + z = 6y2z + 4y

xz4 + 4z3 + x = 6z2x+ 4z

Proposed by Daniel Sitaru - Romania

Solution by Daniel Sitaru - Romania.

Let x = tan a, a ∈ (−π
3
, π
2
). Then y = 4x−4x3

x4−6x2+1
= tan 4a.

Thus, z = tan 16a and x = tan 64a, implying tana = tan 64a from which
a = kπ

63
, with k an integer. But, since a ∈ (−π

2
, π
2
), k = 0,±1, . . .± 31.

It follows that

(x, y, z) ∈
{(

tan
kπ

63
, tan

4kπ

63
, tan

16kπ

63

)
: k ∈ {0,±1, . . . ,±31}

}
�

Note by Alexander Bogomolny

Let f(x) = 4x−4x3

x4−6x2+1
. Then the solution to the system y = f(x),

z = f(y), x = f(z) could be seen as having iterations on f run into 3 -
cycle which, reminds (if only spuriously) of Sharkovsky’s theorem (http:
//www.tufts.edu/as/math/Preprints/BurnsHasselblattShort.pdf)(see also Pe-
riod Three Implies Chaos) (http://faculty.washington.edu/joelzy/LiYorke
period3.pdf) means that the iteration on function f have cycles of any
length and are, in principle, chaotic. Dan’s solution makes it obvious
that the substitutions x = tana will solve n - cycles for any n = 2,3,4, . . .
Moreover, the union of all such solutions is the countable set of numbers
in the form kπ

4n−1
, where |k| < 4n/2Iterations that start with any other

http://www.tufts.edu/as/math/Preprints/BurnsHasselblattShort.pdf
http://www.tufts.edu/as/math/Preprints/BurnsHasselblattShort.pdf
http://faculty.washington.edu/joelzy/LiYorke_period3.pdf
http://faculty.washington.edu/joelzy/LiYorke_period3.pdf
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point will be chaotic.

Quite obviously the same can be said of a simpler function f(x) = 2x
1−x2 ,

that, for example, could be converted to a system of three much simpler
equations: 

y − 2x = x2y

z − 2y = y2z

x− 2z = z2x

47. DAN SITARU’S CYCLCIC INEQUALITY IN ONE VARIABLE

Prove that, for x ∈ R,(√
x2 − x+ 1−

√
x2 + x+ 1

)2
+
(√

x2 − x+ 1−
√

4x2 + 3
)2

+

+
(√

x2 + x+ 1−
√

4x2 + 3
)2
< 6x2 + 2.

Proposed by Daniel Sitaru - Romania

Solution 1 (by Soumava Chakraborty - Kolkata - India).
For typographic convenience, let’s denote a = x2− x+ 1, b = x2− x+ 1,
and c = 4x2 + 3. Then, upon squaring the required inequality takes an
equivalent form:

6x2 + 8 = 12x2 + 10− (6x2 + 2) < 2(
√
ab+

√
bc+

√
ca),

or, 3x2 + 4 <
√
ab+

√
bc+

√
ca.

Squaring once more give

3x2 + 4)2 − (ab+ bc+ ca) < 2(a
√
bc+ b

√
ca+ c

√
ab),

which reduces to

(*) 9(x2 + 1) < 2(a
√
bc+ b

√
ca+ c

√
ab).

Now,

a = x2 − x+ 1 =
(
x−

1

2

)2
+

3

4
≥

3

4
,

b = x2 + x+ 1 =
(
x+

1

2

)2
+

3

4
≥

3

4
,

c = 4x2 + 3 ≥ 3.

The right - hand side of * is then estimated as

RHS * > 2
(
a

3

2
+ b

3

2
+ c

3

4

)
= 3(2x2 + 2) +

3

2
(4x2 + 3) =

= 12x2 +
21

2
> 9(x2 + 1) = LHS *.

�
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Solution 2 (by Daniel Sitaru - Romania).

Let’s denote =
√
x2 − x+ 1, c =

√
x2 − x+ 1, and a =

√
4x2 + 3. Note

that a, b, c are the sides of a triangle: a+ b > c, b+ c > a, c+ a > b.
For example, square b+ c > a to obtain

2(x2 + 1) + 2

√
(x2 + 1)2 − x2 > 4x2 + 3, or 2

√
(x2 + 1)2 − x2 > 2x2 + 1;

squaring the second time:
4x2 + 4x2 + 4 > 4x2 + 4x2 + 1, which is true.
In ABC,

cosA =
b2 + c2 − a2

2bc
=

−2x2 − 1

2
√
x4 + x2 + 1

sinA =

√
1−
( −2x2 − 1

2
√
x4 + x2 + 1

)2
=

√
3

4(x4 + x2 + 1)

S =
1

2
bc sinA =

1

2
·
√
x4 + x2 + 1 ·

√
3

4(x4 + x2 + 1)
=

√
3

4
.

By the Hadwiger - Finsler inequality,∑
cycl

(a− b)2 + 4S
√

3 <
∑
cycl

a2

such that∑
cycl

(a− b)2 + 4
√

3 ·
√

3

4
< x2 − x+ 1 + x2 + x+ 1 + 4x2 + 3,

i.e.,
∑
cycl

(a− b)2 < 6x2 + 2.

This is exactly the required inequality. �

Acknowledgment (by Alexander Bogomolny)
Daniel Sitaru has kindly posted a problem for the Romanian Mathemat-
ical Magazine, with a solution (Solution 1) by Soumava Chakraborty.
Solution 2 is by Daniel Sitaru.

48. DAN SITARU’S CYCLCIC INEQUALITY IN MANY
VARIABLES

Prove that, for a, b, c, d > 0,

a+ b+ c+ d ≤
a5 + b5 + c5 + d4

abcd
.

Solution (by Kunihiko Chikaya - Tokyo - Japan).
By the AM-GM inequality:

a5 + (a5 + b5 + c5 + d5)

5
≥ 5
√
a5 · a5b5c5d5 = a · abcd,

b5 + (a5 + b5 + c5 + d5)

5
≥ 5
√
b5 · a5b5c5d5 = b · abcd,

c5 + (a5 + b5 + c5 + d5)

5
≥ 5
√
c5 · a5b5c5d5 = c · abcd,
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d5 + (a5 + b5 + c5 + d5)

5
≥ 5
√
d5 · a5b5c5d5 = d · abcd.

Adding up the four gives

5(a5 + b5 + c5 + d5)

5
≥ (a+ b+ c+ d)abcd,

which is exactly the required inequality. �

Generalization (by Alexander Bogomolny)

Prove that, for integer n > 0 and ak, k ∈ 1, n,( n∑
k=1

ak

)( n∏
k=1

ak

)
≤

n∑
k=1

an+1
k .

Proof (by Alexander Bogomolny).
By the AM-GM inequality,

n∑
j=1

(tan+tj +
∑n
k=1 a

n+t
k

n+ t

)
≥

n∑
k=1

n+t

√√√√at(n+t)j ·
n∏
k=1

an+tk =

=

n∑
k=1

atj ·
n∏
k=1

ak =
( n∑
k=1

atj

)
·
( n∏
k=1

ak

)
.

It remains only to note that

n∑
j=1

(tan+tj +
∑n
k=1 a

n+t
k

n+ t

)
=
t
∑n
j=1 a

n+t
j +

∑n
j=1

∑n
k=1 a

n+t
k

n+ t

=
t
∑n
j=1 a

n+t
j + n

∑n
k=1 a

n+t
k

n+ t
=

(n+ t)
∑n
k=1 a

n+t
k

n+ t
=

n∑
kj=1

an+tk

�

Acknowledgment (by Alexander Bogomolny)
Dan Sitaru has shared a problem from the Romania Mathematical Mag-
azine, with a beautiful solution by Kunihiko Chikaya. Both the problem
and the solution suggest a generalization.

49. DIMENSIONLESS INEQUALITY IN THE EUCLIDEAN PLANE

Given six points in the Euclidean plane: A,B,C,D,E,F . Prove that

2(AB2 +BC2 +CD2 +DE2 +EF 2 + FA2) ≥ AD2 +BE2 +CF 2

Source: TST - Romania

Proof (by Ioan Serdean - Romania).
Let the points have coordinates (xk, yk), k = 1, . . . ,6. Setting (x7, y7) =
(x1, y1), the required inequality becomes

2
( 6∑
k=1

[
(xk+1 − xk)2 + (yk+1 − yk)2

])
≥

3∑
k=1

[
(xk+3 − xk)2 + (yk+3 − yk)2

]
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This will be proved if we manage to show that

2
( 6∑
k=1

(xk+1 − xk)2
)
≥

3∑
k=1

(xk+3 − xk)2,

2
( 6∑
k=1

(yk+1 − yk)2
)
≥

3∑
k=1

(yk+3 − yk)2.

Obviously, suffice it to prove just one of these inequalities as the differ-
ence between the two is exclusively notational. Remarkably, this would
mean that the problem could have been posed in any Euclidean space
Rn, n ≥ 1, and not just the Euclidean plane.
Thus introduce ak = xk+1 − xk, k = 1, . . . ,6. The first inequality then
reduces to

2
( 6∑
k=1

a2
k

)
≥

3∑
k=1

(ak+2 + ak+1 + ak)
2.

Note that by the definition,
∑6
k=1 ak = 0. With this contraint, the above

inequality is equivalent to

2
( 5∑
k=1

a2
k

)
+ 2

( 5∑
k=1

ak

)
≥

3∑
k=1

(ak+2 + ak+1 + ak)
2.

The latter can be transformed into( 5∑
k=1

ak

)5
+ (a1 + a3 + a5)2 + (a1 + a4)2 + (a2 + a5)2 ≥ 0

which is of course true. �

Acknowledgment (by Alexander Bogomolny)
The problem from the Romanian Mathematical Magazine has been kindly
shared at the CutTheKnotMath facebook page by Daniel Sitaru, along
with the beautiful solution by Ioan Serdean.

50. A TRIGONOMETRIC INEQUALITY FROM THE RMM

Prove that, for x, y ∈
(
0,
π

2

)
, sin (x+ y) ≤ sinx

(sin y

y

)3
+ siny

(sinx

x

)3
Proposed by Daniel Sitaru - Romania

Proof (by Soumava Chakrabory - Kolkata - India).
Due to the addition formula for sine, sin (x+y) = sinx cosy+cosx siny,
to prove the required inequality suffice it to establish that, for

z ∈
(
0, π

2

)
, cos z <

(
sin z
z

)3
. This is the same as f(z) = sin2 z tan z − z3 > 0.

Note that f(0) = 0. We shall differentiable repeatedly.

f ′(z) = sin2 z sec2 z + tan z(2 sin z cos z)− 3z2

= tan2 z + 2 sin2 z − 3z2.
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Introduce g(z) = f ′(z) and note that g(0) = 0.

g′(z) = 2 tan z sec2 z + 4 sin z cos z − 6z

Introduce h(z) = 1
2
g′(z) and note that h(0) = 0.

h′(z) = (sec2 z)2 + (tan z)(2 sec z)(sec z tan z) + 2(cos2 z − sin2 z)− 3

= (1 + tan2 z)2 + 2 tan2 z(1 + tan2 z) + 2(2 cos2 z − 1)− 3

= (1 + t2)2 + 2t(1 + t2) +
4

1 + t
− 5 =

3t3 + 7t2

1 + t
,

t = tan z > 0 and so h′(z) > 0. Hence, h(z) > h(0) = 0, so that g′(z) > 0,
and g(z) > g(0) = 0, meaning f ′(z) > 0 and f(z) > f(0) = 0.
This completes the proof. �

Acknowledgment (by Alexander Bogomolny)
Dan Sitaru has kindly posted the above problem form the Romanian
Mathematical Magazine at the CutTheKnotMath facebook page.

Its nice to be important but more
important its to be nice.

At this paper works a TEAM.

This is RMM TEAM.

To be continued!

Daniel Sitaru
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