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1. AN EASY INEQUALITY WITH THREE INTEGRALS

Let a,b,c > 0. Prove that

o b arctan x 5 ¢ arctanx o 2 arctan x 3 3 3
a —dxz+b —dx+c¢ ———dx <a’+b’+e¢
0 €T 0 T 0 €T

Proposed by Daniel Sitaru - Romania

Remark (by Alezander Bogomolny).

The starting point of the solutions below is the observation that amtmﬂ <1,
for all £ > 0. The fractions has a limit of 1 as  — 01 which allows for
the definition (by continuity) f(1) = 1.
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The inequality is equivalent to % <1, for 0 € (0, g)
Obviously, the inequality holds for any f(x) < 1 in leau o

f arctan x
Solution 1.

We have

v arctan x
——dx < 1.
0 €T

It follows that
5 b arctan x 5 [€arctanz 5 [* arctanx 5 5 5
a / ——dx+0b / ——dx + ¢ / ———dx < a“b+ b“c + c“a
0 T 0 x 0 T
Suffice it to show that a?b + b%c + c?a < a® + b3 + 3. By the AM-GM
inequality,
a® + a? + b® > 3V a%b3 = 3a?b,
b2+ b2+ 2 > 3bzc,
A+ +ad > 3c%a.
Summing up gives 3(a? + b% + ¢®) > 3(a?b + b%*c + c%a), as desired.
O

Solution 2.

This solution only differs from the above in treatment of
ab+b%c+ c?a < a® + b2 4 3. This is simply true by the rearrangement
inequality.
O



Acknowledgment (by Alexander Bogomolny).
The problem above has been kindly posted at the CutTheKnotMath
facebook page by Daniel Sitaru, along with a solution (Solution 1) by
Soumava Chakraborty. Leo Giugiuc and Ravi Prakash have commented
with practically identical solutions (Solution 2). The inequality has been
published in the Romanian Mathematical Magazine.

2. AN INEQUALITY FROM GAZETA MATEMATICA, MARCH
2016

Let a, b, c be positive numbers such that a® + b 4 ¢® = 3.
Prove that (a + ¢)(1+b) < 4.
Proposed by Daniel Sitaru, Leonard Giugiuc - Romania

Proof 1.
1 a
Define matrix Z g . We have
c 1
1 a
+ (1 a b c a b
A'A_(a b ¢ 1 b c
c 1

_(a?+b*+c+1 a+ab+be+te
“\a+ab+bc+ec a?+b2+c2+1

(s (@ + 0 +0)

" \(a4+c)(1+Db) 4

By Cauchy - Binet theorem, det(At - A) > 0. Therefore, [(a + ¢)(1 + b)]? < 16,
or (a+c)(1+0b) <4. O

Proof 2.

We use spherical coordinates. Let b= +/3cost,a = v/3sintcosu, and
¢ = v3sintsinu, where 0 < t < g

We need to prove that \/g(cosu + sinu) (1 + v/3 cos t)sint < 4.

Observe that 1 < sinu 4+ cosu < V2.

Thus, suffice it to prove that \/6(1 + v/3 cos t)sint < 4.

Consider the function f :(O, g) — R, defined by f(t) = (1 + v/3 cost) sint.
We have f/(t) = 24v/3 cos? t + cost — /3 sint which implies

max f ( arccos (%)) = 2\/? Therefore,

2
V6(1 4+ V3 cost)sint < V6 - 2\/; = 4.



Proof 3.
(a—b)2+ (b—c)?2+ (a—1)%2 + (c —1)? > 0 which simplifies to
(a?+b>+c?®)+1—ab—bc—a—c>0.
This is exactly (a+¢)(1+b) <4
(I

Proof 4.

By the AM-QM inequality, """g"'c < \/“2"'%2"“:2 = 1. Further, by the
AM — GM inequality,

(a—}—c)(b—l—l)g(a—'_c—;b—i_l) S<3—;1)2=4.

Proof 5.
2 2

From a? + b2 4+ ¢ = 3,3 a2 2(2@) , implying (Za) <9, or
a+b+c<3. a+b+c+1<4. Therefore,
4> (a+ec)+(b+1)>2y/(a+c)(b+1),ie.,2>+(a+c)(b+1),or

4> (@ +)b+1)
Equality is attained when a + ¢ = b 4+ 1, which, with a2+ b2+c¢2=3
impliesa=b=c=1. ([

Proof 6.
From (xz — y)? > 0 we have 2zy < x2? + y2. We use this with the couples

(a,b), (b,c),(1,a),(1,c):

2ab < a? + b?
2bc < b2 + 2
2a <1+a?
2c <1+ c?
adding which gives 2(a + c+ ab+ bc) < 2 + 2(a? + b? + ¢?) = 8, and this
is exactly (a+c¢)(b+1) < 4. O

Proof 7.

Ot C=Ae 23

(a+c)(1+b) <V2V3—b*(1+0b)

To continue:



<V2y4-2b(1+0b) = \/5\/(4 — 2b)(1 + b)?2

:\/5\/(1+b)(1—+—b)(4_2b)S\/i\/<1+b+1—|:—)’b+4_2b)3=4

The equality is achieved for 14+b = 1+ b = 4 — 2b, making b = 1 which,
by the way, satisfies 3 — b2 > 0. a =c =4/ 3_2b2, ie.a=b=c=1.

O
Proof 8.
'E)
(1,¥2)
0r / 5
T b+vzy=3
To continue:
(a+¢)(1+b) <V2V3—b2(1+b)
3—b 3—b+1+0b\2
SVE Sy () =4
Equality is achieved for3 —b=1+4+band a =c = %, i.e.,
a=b=c=1.
O

Proof 9.
Observe that (a +¢)(14+b) =a-14+a-b+c-1+b-csuch that by the
Cauchy - Schwarz inequality,
(a-14+a-b+c-1+b-b-c)?<(a®>+b*+2+b%)(1°+a?+1%24?)
which leads to a chain of inequalities
(a+ab+c+bc)? < (3—i—b2)(2—|-a2 +c?)
[(a+c)(1+b)]* < (3+b%)(2+3—b7)
3+b2+5—b%12 (872
_ 2\ 12 _[°
=(B+6)(6-b?) <| ; | =15/
and, therefore, (a 4+ ¢)(1 4+ b) < 4. O
Proof 10.
From (a +c)? < 2(a? +c?) and (1 + b)? < 2(1 + b?) we obtain a sequence
of inequalities:

(a+0)?(140b)* <4(a® + )1 +b%) <

2 2 1 2 4

() =a(3) =
2

and, therefore, (a 4+ ¢)(1 4+ b) < 4. O

<4




Proof 11.
2
We prove ((a—i—b)(l—l—c)) < 16 when the point (a, b, c) lies on the sphere

of radius v/3 centred at the origin. At height c the sphere is a circle of
radius r = v/3 — ¢2 and the maximum of a + b is r/2 (consider the line
with slope —1 tangent to this circle in the first quadrant of the plane).
We want thus the maximum of 2(1 + ¢2?)(3 — ¢?) for 0 < ¢ < v/3. The
value 16 is attained for ¢ = 1.

But 16 — 2(1 4+ ¢)?(3 — c?) = 2(c — 1)%(5 + 4c + c?) > 0, for all real c.

O
Proof 12.
Use Lagrange multipliers to prove that
1 1+ b) = 4.
o B+ OO+ D

Let J = (a +c¢)(1+b) + A(a? + b% + 2 — 3).
Taking % =8 — 9 _ % = 0 yields

b — dc
(2) 1+ b+ 2aX =0,
(3) 1+c+2bA=0,
(4) 14+b+42cA=0,
(5) a?+b>+c2=3
(6) a = ¢ (from 2| and
(7) 2a® + 2abX = 0 (from [3] and [6)
(8) b+ b? + 2ab\ = 0 (from
9) b+ b2 = 24 (from [7] and
(10) 2a® + b* = 3 (from [5] and [6)
(11) 2b2+b—3:0,b:1,—§ (from [9] and [10))

Hence, b = 1 and from a = *1, implyinga =c=1and b =1, and
follows.
U

Remark (by Alexander Bogomolny).
It is clear that the equality is attained for a = b = ¢ = 1 - a symmetric
condition whereas the inequality itself is asymmetric. In analogy with
the above derivation, we can show (b+a)(1+c) < 4 and (b+c¢)(1+a) < 4.
The sum of the three gives (a 4+ b+ ¢) 4+ (ab + bc + ca) < 6 which is just
more symmetric.

Acknowledgment (by Alexander Bogomolny).
Proofs 1 and 2 are by Leo Giugiuc and Daniel Sitaru; Proof 3 is by
Nevena Sybeva; Proof 4 is by Augustini Moraru; Proof 5 is by Imad Zak
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and independently by Rahim Shahbazov; Proof 6 is by Robert Kosova;
Proof 7 and 8 are by Kunihiko Chikaya; Proof 9 and 10 are by Sk Rejuan;
Proof 11 is by Grégoire Nicollier; Proof 12 is by Michalos Nikolau.

3. AN INEQUALITY IN CYCLIC QUADRILATERAL III

Prove that in a cyclic quadrilateral ABC D, with sides AB = a,BC = b,
a+b+c+d

CD =c,DA = d, and the semiperimeter s = — the following

inequality holds

s s s
sin A sin B <(f — 1) (f — 1) (7 — 1) (f — 1).
a b c d
Proposed by Daniel Sitaru - Romania
Solution.
By Brahmagupta’s theorem, the required inequality is equivalent to

abcdsin Asin B < [ABCD)?

where [ABC D] denotes the area of the quadrilateral. By the AM-GM

inequality, this is equivalent to

(ad + bc)sin A (ab+ cd) sin A
2

abedsin Asin B <

bl

. (ad+bc) (ab+cd)
meaning abcd < 3 . > -

But, by the AM-GM inequality, vabed < % and, similarly,
/abc < ab+cd

The product of the two is the required abed < (“d‘z"bc) (“b+‘:d)
Equality is achleved when ad = bc and ab = cd. Talking the product

a’bd = c?bd, or a® = c2, and, subsequently, a = c.
But then b = d, implying that ABCD is a parallelogram, and, being
cyclic, it is a square. ([

Acknowledgment (by Alexzander Bolgomolny).
The problem from his book Math Accent has been posted at the Cut-
TheKnotMath facebook page by Daniel Sitaru, along with practically
identical proofs by Leo Giugiuc, Adil Abdullayev, and Ravi Prakash.

4. A TRICKY INTEGRAL INEQUALITY

Let a > 0, and define

91:/ (/ \/m2+y2—6m+9dm>d

0 0

Q2=/ (/ \/w2+y2—8y+16dw>dw
0 0
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Prove that Q, + Q2 > 5a2.

Proposed by Daniel Sitaru - Romania

Solution (by Ravi Prakash - New Delhi - India).

First note, that due to Fubini’s theorem, both repeated integrals can be
treated as double. Next observe that the integrands are the (Euclidean)
distance functions:

\/wz + y2 — 6z 4+ 9 = dist(B, P) and \/wz + y? — 8y + 16 = dist(A, P),
where A, B, P are defined below:

Az, y)

_.-"'-'
/

B(3,0)

By the triangle inequality then

Ql+92:/ / (\/m2+y2—6w+9+\/m2+y2—8y+16>d:cdy
o Jo

:/ / (dist(B,P)+dist(A,P))da:dy2/ / dist(A, B)dzdy =
0 0 0 0

=/ / 5 = 5a2.
0 (0]

Eztra (by Alexander Bogomolny).

The inequality just proved is always strict and can be improved for
specific values of a. For example, it is not hard to see that, for a < 0.5,
dist(B, P) + dist(A, P) > 6.

The beauty of the problem is in the implied generality. Indeed, any
distance function ca be used in place of the Euclidean distance to make
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the problem even more intriguing. For example, the taxicab distance
leads to the following inequality:

/Oa /Oa(lﬂﬂ — 3| + |y|dz)dy + /Oa </Oa(|a:| + |y — 4|)dy> de > 7a?.

Using the bounded distances disguises the problem even further. For
example, define

a a 2 2_6 9
91:/ Vet ty il dx |dy
0 0 1+\/:1:2+y2—6:1:+9

al ra 21 y2 — 8y + 16
Q2=/ \/:c Ty y+ dy |dzx.
0 o 14+ +/x2+y%2—8y+ 16

Then Q4 + Q5 > %a2. For another example, if

“(1* le—3+ly
0, = dz |d
: /o</01+(|m—3|+|y|>”” Y

“(* lzl+ly—4
Qy = dy |dz,
2 /</ Lt (2l + ly —a) ™ )"

then Q; + Q5 > %a2.

Acknowledgment (by Alexander Bogomolny).

The problem from the Romanian Mathematical Magazine has been posted
at CutTheKnotMath facebook page by Daniel Sitaru, with a solution by
Ravi Prakash.

5. COSPHERICAL POINTS

Find x € R such that:

are cospherical points.

Proposed by Daniel Sitaru - Romania

Solution (by Leo Giugiuc), Comments (by Alexander Bogomolny).

In the Euclidean 2D space any three distinct points are concylics, unless
they are collinear. In the Euclidean 3D space any four distinct points
are cospherical, unless they are coplanar by not concyclic.

The three distinct points A, B, C define a plane, say a and a circle, say
w. It is immediately verifiable that A, B,C € S, where S denotes the
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unit sphere 2 + y? 4+ 22 = 1. In particular, w = a N S.
The condition for the four points be coplanar is given by

2v3 v/3 1 1

2\/§1x/§1_0
2 3 V3 1 ’
0 2 xz 1

4
The equation implies = 2, i.e., D (O 1 ), meaning D ¢ S and,
5

therefore, D ¢ w. So, if x = 34, B,C, D are coplanar, but not co-

spherical. If = ¢ %, then A, B,C,D are not coplanar and, hence, are
cospherical.

Thus the answer is R\{%} O

6. CYCLIC INEQUALITY

For a,b,c > 0 the following inequality holds:
\/az—ab—l-bz—i-\/b?—bc—{—c?—l-\/c2—ca—|-a2
§a+b+c+\/a2+b2+c2—ab—bc—ca

Source: AOPS
Solution (by Claudia Nanuti, Diana Trdilescu, Daniel Sitaru, Leo Giugiuc).

Set w = —% + i?, which is a rotations by 120° counterclockwise.

Define ¢ = a,y = bw, z = cw?.

o ¥=bw

; ,
e« T = cu

First of all |z| = |a|, |y| = |b|, |z| = |c|. Then also, |t+y| = va? — ab + b?,
ly + 2| = Vb2 — bc + 2, |z + x| = v/c2 — ca + a2, and
|z + vy + 2| = vVa?2 + b2 + c2 — ab — bc — ca. 'l verify the later identity:

RRICATERAN

- Y

m—i—y—i—z_(a—fb—fc 2

2



14

It follows that

2+1b2+12 b +1b +3b2+32 b

=a — —c*—ab—ac+ —be+ — —c“ — —be

4 4 2 4 4
=a2+b2—|—cz—ab—bc—ca,

as required. It is now clearly seen that the problem is simply a refor-
mulations of Hlawka’s inequality:

|z +y| + |y + 2|+ |z +z| < |z|+ |y| + |2| + |z +y + 2]

true for any three complex numbers =z, y, z. O

7. AN APPLICATION OF SCHUR’S INEQUALITY - II

Prove that for x,y,z > 0 such that xyz = 1 , the following inequality
holds:

2 2
4 3 "ty
T z) > (7> 3
St tet+a 2 (F ) 4

Proposed by Daniel Sitaru, Leonard Giugiuc - Romania
Proof 1 (by proposers).
We use Schur’s inequality twice:
With » = 1 in the form }_ z3 + 3zyz > 3 zy(z + y) and,

with » = 2 in the form Y 2% + zyz Y = > > zy(z? + y?).
Since xyz = 1 the two can be rewritten as

Zw3+322(a¢—:y>’
Yot +Yex 3 (2L,

Adding up,
xz? + y? T z Yy x Yy =z
But (2 +2) > 242+ 2 =6. It follows that
Z(w4+w2+w)22(7‘”2+y2)+6—3

z
or

Z(x4+y2+z) ZZ(M)-'_S

z
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Proof 2 (by Imad Zak - Saida - Lebanon,).
We start with Schur’s inequality:

Zw4+xyzz.’£=2x4+z:c=2(w4+m) >

.’1}2 _|_ y2
> xy(z? )= _
> wy@® +y?) =) ——

Further, by the AM-GM inequality,

Zm3 > 3xyz = 3.

Adding this to the previous inequality yields the required result.
Equality holds for t =y = z = 1. U

8. A4 - VARIABLE INEQUALITY FROM ROMANIAN
MATHEMATICAL MAGAZINE

Prove that, for x,y,z,m € R,
l(a—b)(b—c)(c—a)| <D |a—blla+c+n|b+c+n|
cyc

Proposed by Daniel Sitaru - Romania

Proof (by Ravi Prakash - New Delhi - India).
Denote x = b+c+n,y =c+a+n,z =a+b+n. Then, e.g.,a—b =y—=x,
and the inequality to prove becomes

(2 =)y —2)(z—2)| < Y [(z — y)zy|
cycl
We have,
RHS =) |(x —y)zy| > |(z — y)zy + (y — 2)yz + (z — z)zx|
cycl
=l —y)(y — 2)(z — z)| = [(a — b)(b— c)(c — a)],
as required.

Equality is achieved when ¢ = y = z, i.e., when a = b = c. O

Acknowledgment (by Alexander Bogomolny).

Daniel Sitaru has kindly posted the above problem form the Romanian
Mathematical Magazine, with a proof by Ravi Prakash, at the CutThe-
KnotMath facebook page.

9. A SYSTEM OF EQUATIONS IN DETERMINANTS

Statement (by Alexander Bogomolny).
Daniel Sitaru has kindly posted the following problem form the Roma-
nian Mathematical Magazine and its solutions by Ravi Prakash at the
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CutTheKnotMath facebook page:
Find A € M, (C) such that:

det(A+ XY) =det(A+YX),VX,Y € M,C
detA=1

Solution (by Ravi Prakash - New Delhi - India).
Let E;; = (d;;) be the matrix with all elements zero, except for the one
in ¢ — s row and j — s column which is 1.

EijE'rs = {

Consider X = aFE;;,a € Cand Y = FEy;; XY = aF;s, Y X = 0 unless
©t = s and X = E;;, otherwise. Thus, taking ¢ # s,

det(A + aE;s) = det(A).

Now using the minor expansion of the determinant,

Eis,ifj=r
0, otherwise

det(A + aE;5) = Z(aij + adi;) My (—1)*F7

j=1
= Z a,ijMij(—l)i+j + (J{Mis(—l)i+s
j=1

= det(A) + aM;,(—1)**®
Since this equals det(A) and « is arbitrary, M;s = 0,7 # s. Then from

n
det(A) = Z a;;M;;(—1)"" = a;; M,
j=1
it follows that a;;M;; =1, for all: =1,...,n.
In particular, for : = 1,...,n,a;; # 0 and M;; # 0.
On the other hand, the choice X = FE,.; and Y = FE,, leads to
det(A) + aM,, = det(A) + a M,

so that all dialog minors of A are equal and, as consequence, so are all
its diagonal elements: a;; = A\, for i = 1,...,n and a fixed A € C.
Next, for ?:1 75 iz,

n
0=> ai,;jMi,;(—1)"" = a;,i, My,
j=1
implying that all off - diagonal elements of A are zero: a;,;, = 0, for
11 7 i2. Thus A = AFE, where FE is the unit matrix.
Finally, 1 = det(A) = A™ implies A™ = 1, i.e. X is a root of unity. a
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10. AN INEQUALITY IN INTEGERS

Statement (by Alexander Bogomolny).

The following inequality, due (1979) to professor Radu Gologan has
posted at the CutTheKnotMath facebook page by Leo Giugiuc along
wit a solution by Daniel Sitaru and Leo Giugiuc. Radu Gologan is the
Romanian team leader for the IMO.

a
Let a and b be positive integers such that 3 < V.

1
Prove that a + —< V7.
b ab
Proposed by Radu Gologan - Romania

Solution (by Leonard Giugiuc, Daniel Sitaru - Romania).
a? < 7b? so that a? < 762 —1. In Z,a® € {0,1, 2,4}, making a? = 7b%>—1
impossible. Thus, necessarily, a? < 7b? —2. But then, again, a? = 7b% —2
is also impossible such that, in fact a? < 7b% — 3, or, a < /7b% — 3.
Introduce function f(z) = x +i which is monotone increasing for x > 1.
It follows that

1.2

a—+ 7>
a

(Vo2 =3+

which is equivalent to

1 2>
7—=s) =(

2((1 + 1>2

14—
7b2 — 3 a

In addition, since b is a positive integer, 1 > ﬁ, such that 7b% >

(a + %)2

2
In other words, 7 >(% + ﬁ) , Le., ¢+ ﬁ < V7, as required. |

11. ORTHOGONALITY IN ISOGONAL CONJUGACY

BD and BE are isogonal conjugate in AABC; BE 1. CE and
BD 1 A. F is the intersection of CD and AE.

Prove that BF | DE.
Proposed by Elberling Vargas Diaz - Peru
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Solution (by Claudia Nanuti, Diana Trdilescu, Daniel Sitaru, Leo Giugiuc).
Obviously, the angles BDC and BEA are acute. Consequently, the
angles BDE and BED are also acute. So, without loss of generality, we
may choose D = —u, E = v and B = 1, with u,v > 0. On the other hand,
triangle BDA and BEC are inversely similar and right angled at D and
E, respectively; hence there is £k > 0 such that % =(% = —ka.
From here, A = k — u — uki and B = v — k — vki. Let’s write the
equations of the straight lines AE and CD:

AE : ukx — (u + v — k)y = uvk,
CD : vkx + (u+v — k)y = —uvk.

These give us * = 0, meaning that F' lies on the y - axis. But DE was
chosen to be the x - axis and the two meet at the right angle. O

Remark (by Alezander Bogomolny).

Francisco Javier Garcia Capitan has observed that there is a second
line, say, BE’. It is easy to see that E/ = CD N (BC) where (BC) is the
circle with BC as a diameter. In this case, F/ = E’. He posed this as
an algebraic problem:

If we consider the vertices with coordinates B = (0,0),C = (a,0) and
A = (u,v), the lines y = ma and y = nx are isogonal with respect to
the angle B if n = *="%., For any m there exists another value of n,

u+mov *

precisely n = %#_)W’ such that the lines y = mxz and y = nz

satisfy the conditions of the problem. Give some geometric description
of this line.

12. ANGLES IN TRIANGLE: AN EXERCISE

In AABC;AB = AC,/BAC = 120° and BC = +/5.D is a point
inside AABC such that BD =1 and CD = /2

B /5 C

Prove that ZADC = 60°.

Proposed by Kadir Altintas - Afyon - Turkey
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Solution 1 (by Alexander Bogomolny).
Rotate the diagram 120° counterclockwise around A : B goes to C, C to
C’, and D to D’.

CI

B I

By the Law of Cosines in ABCD,

5=1—2v2cos ZBDC + 2,

such that cos /BDC = —i , giving /BDC = 135°.

We thus have /CBD + ZBCD =45°,/C'CD’ = /CBD,/BCC’ = 60°,
leading to Z/DCD’ = 15°.

As we know, sin15° = @ and cos 15° = W.

Since CD’ = BD = 1, we can employ the Law of Cosines in ADCD’ to

find DD’:
\/_—I-\/_

(DD =1-2vV2— " 42=2-+3

Further, by the Law of Sines in ADC’D',
1 2 -3

= =4
sin? Z/CDD’' (V6 —+2)/4
implying < CDD’ = 30°.
Note that ZADD’ = 30° also because, by the construction,
/DAD’ =120° and AD = AD’. Tt follows that ZADC = 60°. O
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Solution 2 (by Claudia Nanuti, Diana Trdilescu, Daniel Sitaru and Leonard Giugiuc).

Thinking of the points as complex numbers, choose

B=-2,0=2,D= . With this choice, A = 12 +Az£ With
_ A-D __ AD . _ Im(5=3)
¢ = LADC, 5= = &p(cosd + isin¢) such that ¢ = ﬁ. Thus,
we get
A-D 1 V3 —

C—-D 20\/§K\/§+i(5_2\/§))(3+i)} = 4\/—31(1"‘2'\/5),

from which tan ¢ = /3, i.e., ¢ = 60°. ]

13. APPLICATION OF CAUCHY - SCHWARZ’S INEQUALITY

If a,b,c > 1, prove that:

Vaz —1+ Vb2 —14+V/e2—1<

ab + be + ca

Generalize!
Proposed by Dorin Marghidanu - Romania

Cauchy - Schwarz Inequality (by Alexander Bogomolny).

The two solutions below invoke the most important and useful math-
ematical tool - the Cauchy - Schwarz inequality that was covered almost
in passing at the old an by now dysfunctional Cut-The-Knot forum. Be-
low I state the inequality and give two proofs (out of a known great
variety.)

For all real x;,y;,1=1,2,...,n,
n 2 n n
(o) <23t
=1 =1 =1
The equality is only attained when the two sequence (vectors) {x1,...,Tn}
and {y1,...,Yn} are linearly dependent, i.e., when, say, there are v and

v such that ux; + vy; = 0, for all 7,1 < 7 < n.

Proof 1.
Consider

F@) = Z(twi + y:)*
1=1
= (a7 + 2twiy; + y7)
t—1

= t? <an w?) +2t (an wy) + Xn: v;
=1 =1 i=1
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Since f(t) > 0, for all ¢ € R, the discriminant

D= zy)? — (O, 2?) (X, y?) is not positive.
This is exactly the Cauchy - Schwarz inequality. O

Proof 2.
The Cauchy - Schwarz inequality is a direct consequence of a stronger
result, Lagrange’s identity:

(Z a:f) (Z yf) - <Z ‘”zyz> = Z (wiys — ziy;)?

1<i<j<n
0

Solution 1 (by Claudia Nanuti, Diana Trdilescu, Daniel Sitaru and Leonard Giugiuc).

We denote x = a2 — 1, etc. Obviously, ,y, 2 > 0 and the task becomes
to prove

V@ +DWE+1) > 2@ 4y +2)

cycl
By the Cauchy - Schwarz inequality, \/(z2 + 1)(y2 + 1) > z + y, with
equality only when xy = 1. Applying this term-by-term yields the re-
quired inequality. Equality holds if t =y =2 =1, i.e., a = b=c = V2.
For a generalization,

n 1 n
Z \/(1,12 —1 S 520@0@_}.1
=1 =1

where a,+1 = a;. For n odd, the equality is only attained when all
a; = \/5; for n even, whenever 1,5 = x2x3 = ... = 1 = 1. O

Solution 2 (by Alerander Bogomolny).
We’all go directly to a general case. By the Cauchy - Schwarz inequality,

n 2 n
(Z\/af— 1) §nZ(a?—1)
i=1 i=1
= nzn:a? —n
i=1

n
<n g AiGi41 — N
i=1

where a,,+1 = a;. Note that the first inequality becomes equality when-
ever all /a7 — 1 are equal (i.e., whenever all af are equal). The second
inequality becomes equality whenever all a; are equal. Thus the required
inequality will be proved if we manage to prove

n Z aia;y; —n < (2 Z aiai+1>
=1

=1
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Denote t = Y )" | a;a;11. We need to prove that
1.2
£(t) =(5t) —nt+n>0

This will be true for all t € R provided the discriminant D = (2n)2 — 4n?

of the quadratic form t2 — 4nt 4+ 4n? is not positive. But as matter of
fact, it is always zero, implying f(t) > 0, with f(2n) = 0. It follows that

nY aaip—n < (2 > aiai+1>
1=1

=1
The equality is attained whenever t = Z?:l a;a;+1 = 2n and all a; are
equal, implying a; = v/2. (I

Conclusion (by Alexander Bogomolny).

What do we learn from the above? Two solutions to the same prob-
lem, both using the Cauchy - Schwarz inequality, and, in the original
problem (of three terms) producing the same results. However, the two
methods lead to different generalisations for an increased number n of
terms. The difference is only noticeable when n is even, and the second
solution gives no clue that there might be a difference between the cases
of odd and even number of terms. The only thing that comes to mind
is that occasionally doing everything right may not necessarily yield a
complete (not to use the term ”right”) answer. In a certain sense, the
applications of the Cauchy - Schwarz inequality in the first solutions is
more refined that its application in the second solution, but who could
say that without first trying both ways?

14. AREAS IN THREE SQUARES

Given three squares AM NP, ABCD, and DPQR.

M.

5
A D

Prove that [ACPN] = [ABPQ)], where [X] denotes the area of shape
X.

Proposed by Miguel Ochoa Sanchez - Peru
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Solution 1 (by Alexander Bogomolny).

The solution is illustrated by a sequence of diagrams.

Draw BF || PQ and CG || NP(F on QR or its extension; G on M N or
its extension.

Then [ACPN] = [AGPN] and [ABPQ] = [AFPQ)]:

Mo

=
A D

=
A D

We'd like to show that [EEPN] = [FHPQ), i.e., that EP- NP = HP -
PQ. Consider the circles (M P) and (PQ), with diameters M P and PR,
respectively.

i D
Obviously, A, N € (MP) but also H € (MP).

Similarly, D,Q, E € (PR).
Observe that

LHPN = /HMN = /GRF = LEPQ.

In addition, /ZNHP = /PEQ = 135° because both (inscribed) angles
are subtended by the sides of squares inscribed into the circles (M P)
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and (PR).
It follows that triangles HIN P and EPQ are similar, from which we have

the proposition % = % which is equivalent to EP-NP = HP-PQ. O

Solution 2 (by Claudia Nanuti, Diana Trdilescu, Daniel Sitaru, Leo Giugiuc).
We choose A = —14+—4,B=—-1+44¢,C =1+4+14,D =1—1,and P = a+ b1,
where —1 < a,b < 1.

First of all, Y= = —i, implying N = (a—b—1) +i(a+b+1). Similarly,

» AP
% = 4, implying Q@ = (a+ b+ 1) +i(—a + b+ 1). Further,
a b 1
2[ABPQ]=|a+b+1 —a+b+1 1| =2— (a®+b?
—1 1 1
Similarly, 2[APNC] = 2 — (a? + b?). O

15. AN INEQUALITY WITH JUST TWO VARIABLES II

Prove that, for positive a,b,

(et Vo + ) G + v Ty 552G+ )

Proposed by Daniel Sitaru - Romania

Solution 1 (by Soumava Chakraborty - Kolkata - India).

4+/a n a—+b 4ab (a +b)2
a+b v ab (a + b)? 4ab
a+b (a +b)2 a+b (a+0b)?
<3 2 = 1 - =6 .
<3+2+ = + 1+ 2ab + = + 1ab

Suffice it to show that
a+b (a+b)?2 a b
<54+2(—+ —
Vv ab + 4b =5+ (b + a)

which is equivalent to

a—{—b+ (a + b)2 < 2(a? + b?)
vab 4ab — ab

Now, by the GM-HM inequality, v ab > %, hence

It follows that
a+b a+ b)2 3(a + b)2
(2) + 1+ (7) S 1+ Q
vab 4ab 4ab
and [2| show that the problem will be solved if we manage to prove
3(a + b)? + 4ab < 2(a? + b?)
4ab - ab
This is equivalent to 3a?+ 3b%+10ab < 8a?+8b?, or 5a%+5b%—1ab > 0,
which is simply 5(a — b) > 0.

LHS =3+

6 +

(1) 1+

a+b
Vab S 2ab

O



Solution 2 (by Kevin Soto Palacios - Huarmey - Peru).

. 2vab 4ab .
We employ the obvious <1 and —— < 1 to obtain
a+t+b (a + b)?
3 b)?
LHS <64 2@+8”
4ab
3(a + b)? a b
Suffice it t that 6 + ——— <54+ 2(—+ —).
uffice it to prove tha + 1ab <54 <b+a)
Now note that
3(a + b)2 3/a b
1+ ———< -4+ (=4 -,
4ab -2 + 4 (b + a)
B 5 < 5 (a n b)
ecause — < —(—+ — ).
27 4\b a
Solution 8 (by Soumava Chakraborty - Kolkata - India).
b 1
Using the AM-GM inequality, i > Va S T3
2 va
a+b\/a+ b 1
LHS 5(\/ab+\/ab+ . )( o )
a+b\y/a+b 2 a+b (a-{-b)2 a+b
2vVa = 4
( b+ 2 >( 2ab +\/ab) vab tat 4ab + Va
a+b? 2a+b
4y (a4b? | 2atb)
4ab Vab
Thus, suffice it to prove that
(a+0b)2 2(a+d) a b
4 <542(-—+4+ —
+ 4ab + vab + <b+a>
which is equivalent to
b2 2 b 2402 2a®+2b%+ab
(a+)+(a+)gl+2a+ _2a®+2b" +ab
4ab Vvab ab ab
a+b 2(a+b) _ (a+b)?
Now, from —— we get < , implyin
Vab = 2ab 5 T ab —  ab plyms
(a +b)2 + 2(a +b) < (a +b)2 4 (a+b)*>  5(a+b)?
4ab vab —  4ab a N dab
5 (a+ b)2 2a? + 2b% + ab

Thus, suffice it to prove 1 , i.e.,

ab - ab
5a° + 5b% + 10ab < 8a? + 8b% + 4ab
which reduces to 3(a — b)? > 0.

25
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Solution 4 (by Abdallah El Farissi - Bechar - Algerie).

Let
2ab a+by/a+b 1 2
A= Jab
(a+b+ @ty )(Zab +\/E+a+b)
2ab a-+b 2 1 a+b
= Vab
s Yo 5 ) st Ve )
1 / 2ab a+ b2 1
=~ b Vv < (v 2 _
ab<a+b+ ab+ 2 ) _ab( ab+ a +b)
1 \ 1 ]
:%(ab+2”“b(a+b)+(a+b))Sg(ab+2(a+b)):

a

_ i(Sab+2(a2 +b2)) — 5+2(b "‘%)'

Solution 5 (by Soumava Chakraborty - Kolkata - India).

2ab a+b
Define = ——,y = Vab,z = % We have z < y < z and y? = z=z.
a

+b
1 (Xeya ) (@Y + yz + 2x)
LHS = x —) ==
(2=)(22) v
 (Egazr@yt+yz+y®)  (z+y+2)?  (x+y+2)?
N TYz o Tz N y2
RHS — 2a? + 2b? + bab _ 2(a + b)%2 + ab :1_,_8722,
ab ab y2
o o . (z+y+2)?° 822 . .
The required inequality is equivalent to — <1+ —zwhlch is
Y Y

(x+y+2)? —y?> <822 or, (x+ 2y + 2)(x + z) < 822,
Since x <y < z,x 4+ 2y + z < 4z and z+z < 2z, which shows that, indeed,

(x4 2y + 2)(x + 2) < 822,
O

Solution 6 (by Daniel Sitaru - Romania,).

We know that, for positive a, b, c,
2ab — b
; b s vab s a—2i_

a—+
We’ll use Schweitzer’s inequality:

ki L | m + M)2n?
() (E ) e

k=1
where x1,...,z, € [m, M],m > 0.
2ab a—+b
withn =3, m =x; = ?,wz = Vab, and x3 = + = M, we directly get
a

a+b+ 1 n 2 )
2ab vab a+b

AZ(azj_bb-i-\/E-i-a;b)(
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<o S - ) e ()] -

4ab ~ 4ab a-+b
< %{(@)2 —{—2ab—|—(a_2+_b)2} - %{3ab+(a+b)2} —

[14ab+(a2+b2)} _8. 9 (3+9>.

~ 16ab 8 ' 16\b ' a
l/a b 23 23/a b
Now, 1 < 7(7 + 7). It then follows that — < —(— + 7) and, subsequently,
2\b a 8 16\b a

TP R !

16. AN INEQUALITY WITH CONSTRAINT VII

If z,y,z € R,z +y — 5z = 0,22 + 22 = 1, then: |2z + 3y — 52| < V/101.

Proposed by Daniel Sitaru - Romania

Solution (by Alexander Bogomolny).

Since x 4+ y — 5z = 0, the inequality at hand is equivalent to

|(2x + 3y —52z) —3(x+y —5z)| = | —x + 10z| < Vv101.

This is the one I shall prove under the restriction 2 4 22 = 1. After the
fact, y may be found from = + y — 5z = 0.

The straight lines —x + 10z = const may or may not meet the circle
2 4+ 22 =1.

—z + 10z = 10

—x+10z=6

—x+ 102 = -10

I shall employ geometric illustration. The value of —x + 10z which is
constant on each of the lines changing monotonically in the direction of
their common normal: (—10,1). The extreme values are attained at the
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intersection of 2 + 22 = 1 with z = —10x:

15

—x+ 10z =10

—x+ 10z =6

—x+ 10z=—-10

This happens when = :I:ﬁ,z = ZF% such that, at these points,

| —  + 10z| = +/101, which proves the required inequality. O

17. LIMIT OF A RECURSIVE SEQUENCE

Let k > 2 be a fixed integer; xg,1,...,Tr_1 complex numbers and
1 k=1
Tpt1 = E;]wn_s forn > k — 1.

Find limg,_,  x,,.
Proposed by Arkady Alt - USA

Solution (by Leonard Giugiuc).

First, we introduce two lemmas:

Lemma 1

Let {a,} be a sequence of complex numbers such that a,, # 0,n > 0. If

. An41
lim
n—ool @,

‘ <1, then lim a, = 0.

n—-oo

For a proof, observe that Lemma holds for a real-valued sequence, and

so does for {|an|}. It follows that lim,_,. |a,| = 0 and, therefore, also
lim,, o a, = 0.
Lemma 2

Let z be a complex number, with |z| < 1, and m > 1 an integer. Then

lim n™z" =0
n—oo

For a proof, assume z # 0, for, otherwise, there is nothing to prove.
Let a,, = n™z™. We have

&S

n

. An41 .
lim = lim
n—ool a,, n—o0o

)m-|z|} = 2| < 1.

Hence, by Lemma 1, lim,,_, -, a,, = 0 i.e., lim,,_,, n™z"™ = 0, as required.
To continue, by the definition, sequence {a,} is a linear reccurence of
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order k, with the characteristic polynomial

P(z) = ka* — i z®=(x—1) Z_:(s + 1)x®.

k—1

If f(x) = Z(s + 1)z?,

then f(1) # 0 so that the multiplicity of 1 as root of P(x) is 1. Also
F(=1) # 0.

Let z be a root of P, other than 1. We’ll show that |z| < 1. Indeed,
P(z) = 0 implies

k—1 k—1
kzF = Z z® and, subsequently, |kz¥| = Z z°
s=0 s=0
Let |z| = r. Assume, for a contradiction, that » > 1. Combined with
the above, this would imply
k—1 k—1
krk > Z r® and, further, kr® = Z r® from which r = 1.
s=0 s=0

Now, we have assumed that z # 1 and observed that, as root of P, z #
—1. Hence —z— is not real. But the equality

k—1 k—1
> =2
s=0 s=0

only holds if z is real which is a desired contradiction. Thus, |z| < 1.

Let z1,22,...,2m be the roots of P (other than 1) with multiplicities
815825+ .+58m. The the theory of linear recurrences informs us that there
exists a complex number a and polynomials P;,t = 1,2,...,m, such that

deg P, = sy — 1 and

Ty, = o+ ZPt(n) - zy", for all n > 0.

t=1

m
By Lemma 2, lim [Z Pi(n) - zﬂ =0, so that lim =z, = a.
On the other hand, we can easily verify that

k—1 k—1
Z(k — 8)Tp_s = Z(s + 1)xs,.
s=0 s=0

As we pass to the limit, we get

Kk + 1 k—1 k—1
% ca = ;}(s + 1)z, such that a = kET D) s;)(s + Dzs.
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18. OPTIMAL QUADRILATERAL INSCRIBED IN A SQUARE

Let x,y,z,t € (0,1),Q2 =3 4, vV + (1 —y)>.

Find m =infQ and M =5> Q.

Proposed by Daniel Sitaru - Romania
Solution (by Leonard Giugiuc - Romania).
We’ll use complex numbers.
The function f : [0,1]* — R, defined by f(z,y, z,t) = chcl 2 4+ (1 —y)3,
is continuous and thus attains its extrema on [0,1]*. The extremal val-
ues on [0, 1]* will supply its supremum and infimum on (0,1)%.

Let’s look for infimum first. \/z2 4+ (1 — y)2 = |z +i(1 —y)|, etc. By the

triangle inequality,

dDoVER+(1—y)?2=) |z+i(i—y)

cycl cycl
=[(xt+y+z+t)+i[d—(z+y+z+1)
= |k +i(4— k)|

where k=x+y+2+t,0< k< 4.

But |k+i(4—k)| = \/k2 + (4 — k)2 > 2+/2 which is attained with k = 2,
in particular when x =y =2 =t = % Thus, m = inf Q = 2v/2.

To find the supremum, observe that, for real a and b, v/a? + b% < |a|+|b],
with equality only when ab = 0. In our case,

D Va+(1-y)?< D) (z+1—y) =4
cycl cycl
This is attained with * =y = z =t = 0. Thus, m = sup 2 = 4. ([

19. OPTIMAL IN PARALLELEPIPED

Given a,b,c > 0. Find minimum and mazimum of
f(x) =+Va? + 22 4+ /b2 + (c — x)2? on interval [0,c].

Proposed by Daniel Sitaru, Leonard Giugiuc - Romania
Solution 1 (by Daniel Sitaru).

Consider a parallelepiped (the diagram below), with AB = a,BC = b,
and BF = c. Let « = BJ.

H G
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The diagram reveals several relationships between the elements:
AJ < AF, i.e., Va2 + x2 < /a2 + ¢2
GI<GB=+\b2+c2,FJ=c—uz,
GJ <GB, i.e., = /b2 + (c — x)% < V/b? + c2.
If AF + FG = Q7 and AB + BG = Q3 then, max f(x) = max{Q1, 22}

Counsider just two faces of the parallelepiped:

E F G
J
&
i
a b

A B c
f(x) is exactly the path AJ + JG which attains it minimum value only
of AJG is a straight line. This happens exactly when % = aL—i-b’ so that

ac

~ a+b’
Note —1|:—hat the algebraic formulation conceals an old problem that re-
quires from a spider sitting in the vertex A to reach the fly in a vertex
G in the shortest way possible. The second reveals another geometric
interpretation. (Il

Solution 2 (by Francisco Javier Garcia Capitdn,).
This solution is due to Francisco Javier Garcia Capitan and it draws on
the famous Heron’s problem.

We observe that f(x) is the distance AX + BX where A = (0, a),
B = (¢,b), and X = (0, ).

Br

Since AX + BX = AX + B’X, where B’ is the reflections of B in the =
axis, f(x) will be minimum when A, X and B’ are collinear.

To find = we can use similar triangles AOX and B'M X

; OX _ MX — .
(with M = (c,0)):5% = 31ps OF 5 = <5~ from which a = 25. O
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20. PROPORTIONS AND THE INCENTER

BI AC
Iis the incenter in AABC. Prove thata = EimplieséABC = LACB.

Proposed by Miguel Ochoa Sanchez - Peru

Solution 1 (by Claudia Nanuti, Diana Trdilescu, Daniel Sitaru, Leo Giugiuc).

— 2ac B _ 2ab (o .
We know that BI = atbrc " COS 3 and CI = atbrc " COS 5 implying
B B
BI __ c A cos3 c, 085 _ b 2, c _ .2, B
CI = 4 ' ooz & It follows that 3 cose = & OF b* - cos 5 = c”-cos 3.

By the Law 2of Sines,

5 . 2B ., B C 5 . 2C 5, C B

16 R - sin“ — cos® — cos — = 16 R“ - sin“ — cos“ — cos —

2 2 2 2 2 2
. . . 2 B C _ n2C c
which simplifies to 16 sin” 5 cos 5 = sin” 5 cos 3.

If B # C, then cos% # cos % Let cos% =z and cos% = y. We have

1—-2z?)z = (1 —y?)y, or, y> — 3 = y — x. Since = # y, this simplifies
toz? +xzy+y?=1,or, zy =1— (2 + y?).
But 0 < zy implies 22y? < z2y? 4+ zy and subsequently,

zy < VaRy? oy = Valy? +1 - (22 +y?) = V(@2 - 1)(y2 - 1)

which says that cos g cos % < sin % sin %, i.e., cos B;C < 0, and, finally,
B;‘C > %, which is absurd. Hence, cos g = cos % and B =C. U

Solution 2 (by Alexander Bogomolny).
Set /ABC = 23,/ACB = 26.

By the Law of Sines in AABC, % = Ziﬁ;g By the Law of Sines in

AIBC, % = ::2,?3 Thus we have (*) sin23 -sin3 = sin 20 - sin 6 from
which we should be able to conlude that 3 = 0. It is clear that we may
assume 0 < 3,0 < 90°. But on the interval [0, 90°] function

f(x) = sin 2z - sinx is experiencing a hump symmetric in * = 45°.

-1_

0

e

It follows that (*) may only hold when, say, 3 = 45° —w and 0 = 45° +w,
for —45° < w < 45°. Thus the only possibility to have f(3) = f(0) is
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when 3 + 6 = 90°, making /BAC = 90°.

It is now intuitively clear that if % > 1, then % < 1 and vice versa.
A rigorous justification makes use of Leo’s Lemma.

Assume 0 < B8 < 6 < 90° then also 0 < 28 < 260 < 180°. Then
sin 8 < sin @ and, by Leo’s Lemma also sin 23 < sin 20 but then 21 = AC

CI AB
could not hold. It follows that 3 = 6. ([

21. SCALAR PRODUCT OPTIMIZATION

Let x,y, z,b be real numbers such that (x + 1)?> +y? =1 and
(a — 2)2 + b? = 4. Find the extreme values of the expression ax + by.

Proposed by Leonard Giugiuc - Romania

Solution 1 (by Claudia Nanuti, Diana Trdilescu, Daniel Sitaru, Leo Giugiuc).
The minimum is —8 because the two given circles are externally tangent
at the origin and ax + by is the scalar product of two vectors with the
end points on the circles. Hence 2 %« 4 x (—1) = —8. To determine the
maximum, consider the points A(x,y), B(a,b), and O(0,0). Note that

ax+by = O_A> . @ = 0A-0OB-cos ZAOB. Hence, to achieve maximum,
it is necessary that A and B lie on the corresponding circles. Observe
also that ZAOB has to be acute which allows us to assume that the two
points are in the upper half-plane. Thus, A = (—1 4 coswu,sinu) and
B = (2 + 2cost,2sint), with 0 < t,u < w. Setting v = LAOB, we get
on one hand

A-0O0 OA( +isin)
B_o — op'cosv tisinv
while, on the other,
A—-0O —lcosu+isinu  ising(cos§ +isingy)

B—0 2+42cost+ 2isint 2cos%(cot%—|—isin%) N

sin § T+u—t |, m+u—t
= t(cos —|—1,s1n7)
2cos§ 2
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in %
sin 5

3
2cos 3

cos v = sin t_T“, implying, in particular, that ¢ > u. Substituting,

Since

> 0, we may identify the angles: v = w and so

Lu t  t—u
aac+by:OA-OB-cosv:SsmgcosEsm

Luw o m—1t _ t—u
= 8sin — sin sin
2 2
But, 0 < 3, ”T_t, t_T" and 3 + ”T_t + t_T“ = 3. By Jensen’s inequality,
Lu , m—1t , t—u
8 sin 5 sin sin <1
For equality we need u = 60° and ¢t = 120°. O

Solution 2 (by Alexander Bogomolny).

Note first that the problem could be generalized. Indeed, assuming that
x,y, 2, b satisfy (z + )% + y? = r? and (a — 8)? + b? = s?,

(rys > 0),ax + by = rs(cosv + isinv), and, at the extremes of this
expression, angle v is the same, independent of the radii r,s of the
circles. So, below I shall assume r = s = 1 and use the same notations
A, B, O as the first solution. Let P(—0,1) and Q(1,0) be the centers of
the two circles

A 11 =

-1

For a fixed point B(a,b), the scalar product ax + by is constant on
straight lines perpendicular to OB. The maximum value (for a given B)
is attained for the line tangent to (z + 1)? + y2 = 1. If A is the point

of tangency, PA is perpendicular to that line, and therefore, parallel to
OB.
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It follows that, if A = (—1 + cos u,sinu) then B = (1 + cos 2u, sin 2u):

It then follows that
ax + by = (—1 + cosu)(1 + cos 2u) + sinu sin 2u
= —1 4 cosu — cos 2u + (cos 2u cos u + sin 2u sin u)
= —1+4+cosu — (2coszu — 1)+ cosu
= —2cos’u + 2cosu = —2cosu(cosu — 1).
The parabola f(t) = —2t(t — 1) attains its maximum for ¢ = % There-

fore, the maximum of ax+ by is attained when cosu = %, i.e., at u = 60°,
implying 2u = 120°, and also v = 60°.

With these, the maximum of ax + by equals %, or in the general case,
%+ The minimum is rather obviously (—2r)(2s) = —4rs. O

22. THALES ON ANGLE BISECTORS

Let BE and CF be external angle bisectors in AABC; E is on AC or
its extension, F' is on AB or its extension. From point P on EF per-
pendiculars PM, PN, PQ are drawn to AC, AB and BC, respectively.

Prove that

PM + PN = PQ.
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Proposed by Miguel Ochoa Sanchez - Peru
Solution 1 (by Alezander Bogomolny).

Let’s first formulate simple affine lemma that is based on
Thales’ Theorem:

Lemma
Assume A, X, B are collinear as are A’, X', B’.
Suppose AA’ || XX’ || BB’ and AX : XB=r7r:S.

X S B

P

Then X X' = 5. AA'+ BB’

To continue with the solution assume EP : PF =r : s,r +s = 1, and
consider two extreme positions of P: one when P = F, the other when
P = F. Indices, . and ; are added to distinguish between different
endpoints M, N, Q.

EM,)

© #=— = —
urp

o

(@)

o

Q

Note that M, = E and Ny = F, such that EM, = FN; = 0 and,
since BE and CF are angle bisectors, EN, = EQ. and FM; = FQy.
According to the lemma, PM = sEM, +rFM; = rF My,

PN = sEN., +rFNy = sEN,,

PQ =sEQ. 4+ rFQyg, so that

PQ = sEQ. + rFQs = sEN. + rFM; = PM + PN. O

Solution 2 (by Claudia Nanuti, Diana Trdilescu, Daniel Sitaru, Leo Giugiuc).
Since BC is the greatest side, we may choose A(0,1), B(—b,0),C(c,0),
where b,c > 0. We’ll find the locus of point X (n,m) such that
d(X,AB) + d(X,A) = d(X,B) and X is not in any open half - planes
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(B,AC),(C,AB) or (A,BC).
Under our assumptions, —-m +bn —b >0, m+cn —c > 0, and n > 0.
We have

_ —m-4bn—>b — m4cn—c — .
d(X,AB) = BV ,d(X,AC) et and d(X, BC) n. We

s —m+4bn—>b m+4bn—c __ . .

thus seek X for which Vo + Jen n, implying that the sought
locus is a straight line. By the external bisector theorem,

. . by/c241 btc )
FA/FB = CA/CB, such that F is defined by (b+cv_ e e
By replacing we get immediately that F' € [. Similarly, £ € l. Hence,
also P € EF. We are done. O

Eztra (by Alexander Bogomolny).
It was observed by Dao Thanh Oai that the same arguments applies in
the case of internal bisectors:

PM + PN = PQ.

23. DIVIDE AND CONQUER IN CYCLIC SUMS

Leta,b,c > 0. Prove that

4a  3b a
Zc(b7+§) 212+3Zg
cycl cycl
Proposed by Daniel Sitaru - Romania

Solution (by Soumava Chakraborty - Kolkata - India).

First of all,
4a 3b 4ac 3bc
I AP IRDIE DI

2
cycl cycl cycl a
4 ab 3 ab . ab
=4 a3 =T o
cycl cycl cycl

By the AM-GM inequality,
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On the other hand,

ab ab ca s/ a3 a
> =z
c

c2 c2 b2 — | e8

bc be ab> 3b3_b
atetaz? s =%
ca ca bc> 3c?’_c
ettt =%

Adding these to (1) we get

ab ab ab a b c
7 — =4 — + — >1243(—+ -+ — ).
(gc:lcz g:clcz (gc:lcz (b c a)

O

Acknowledgment (by Alexzander Bogomolny).
The problem above has been kindly posted at CutTheKnotMath facebook
page by Daniel Sitaru (from his book Math Accent), along with a solution
by Soumva Chakraborty.

24. A CYCLIC INEQUALITY IN THREE VARIABLES
Let a,b,c > 0 . Prove that
a® b3 c3 3
+ + >
b2(5a +2b) c2(5b+2¢) a?%(bc+2a) T 7

Proposed by Daniel Sitaru - Romania

Solution 1 (by Imad Zak - Saida - Lebanon).

Consider (z) = m + % Inx — %

.« (@ —1)(362% + 216z + 245)
Fi) = 49x2(2x + 5)2

f'(x) <0, for x < 1, and f’(x) > 0, for x > 1. Since f(1) = 0, f(x) > 0,
for £ > 0. Now, let z = g,y = £,z = Z.xyz = 1. We have to show that

NOEE
cycl 7
where () = ZEigy
9 1
g(x) =Y (f(z) — - ma+
‘;l (gcz( 49 7)

9 3 \ \
- c%:d(f(oc)) — gyt = g:d(f(w)) to204

Equality is attained for x =y =2 =1, i.e.,a = b =c. [



39

Solution 2 (by Kevin Soto Palacios - Huarmey - Peru).
By the Cauchy - Schwarz inequality,

> g Sl Ga 20 2 (0 4 )2

cycl
Thus, suffice it so show that
Z a3 S (a2 +b2 +C2)2
b%(5a + 2b) — chcl [ab?(5a + 2b)]

cycl

3
> 2
-7
cycl
This is equivalent to
7(0,2 +b% + c2)2 > 3(5 Z(a2b2 + 2ab® + 2bc® + 2ca3)),
cycl
which can be written as
6 Z at + Z a*+ 14 Z a?b® > 15 Z(cﬁb2 + 6ab® + 6bc® + 60a3).
cycl cycl cycl cycl
With the AM-GM inequality, we see that
a* 4+ a* + a* 4 ¢* > 4d®c,
b* + b* 4+ b* + a* > 4b3a,
A trct+ct+bt > 4c3b.
And summing up these (times 6) and a* + b* + c* > a?b? + b%c? + c2%a?,
which we know is true, we obtain

a* +b*+ ¢t > ab® + be® + cal®.
O

Solution 3 (by Soumitra Mandal - nickname Diego Alvariz - Chandar Nagore - India,).

By Radon’s Inequality, then the Cauchy - Schwarz inequality, and later,
the AM-GM inequality,

Z a® S Z (a+b+c)d

Ha b?(5a+2b) T o (3,0 Vbe det /5ab + 2b2%)2
(a+b+c)d

(@t b+ 0) S (262 + 5ab))
(a+b+c)d

(\/(a—l-b—l-c)[2(a,—|-b—l-c)2—l—ab—i—bc—l—ca])2

>

>

S (a+b+c)
_(¢m+b+@pm+b+@2+gm+b+@ﬂf

3
7
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Solution 4 (by Daniel Sitaru - Romania,).
Define f : (0,00) — R, by f(x) = 21% Then
Fx) = 3z%2(2+5z) —x3-5 _ 6x2 + 10x3
(2 + 5x)2 (2 + 5x)2
Thus the function is strictly increasing. So, for any positive x,x2, x3,

7 (varmams) < f(TTEEEE)

Further,
5023 + 10x2 + 4«
n — > O
£ = :

making the function convex. By Jensen’s inequality then,

#(vamams) < F(PETEY) < C[p@) + Fma) + Fas)].

Set 1 = ¢, T2 = %,:c3 = < to obtain
a b c 1 a b c
/R g s - =Y.
f( b ¢ a>_3 f(b)—i_f(c)—i-f(a)]
Explicitly,
1 1 (2)3 1 a3
— = 1 <7 b = — R ——
7 f()—3§dz+% 3;2b3+5ab2

Hence, the required inequality.

Solution 5 (by Hung Nguyen Viet - Hanoi - Vietnam,).
By the Cauchy - Schwarz inequality,

a? at

2 b2(2b+ 5a) 2 ab?(5a + 2b)

cycl cycl
S (a2 + b2 + C2)2
~ 5(a?b? 4 b2%c? + c2a?) 4 2(ab? + be? + ca?) )
It remains to prove that

7(a2 + b2+ 02)2 > 15((12b2 + b%c? + czaz) + 6(ab3 +bc® + ca3).

This is equivalent to
7(a4 + bt + c4) > (azb2 +b%c? + c2a2) + 6(ab3 + be® + ca3).
Since, a* 4+ b* 4+ c¢* > a?b? + b2%c? + c%a?, suffice it to show that
a* +b*+ ¢t > ab® + bc® + cal®.

But this follows from summing up the inequalities below
a* + b* + b + b* > 4ab3,
b*+ct+ct+ct > 4b03,
cA4+a*+a*+a > 4ca’.

The proof is complete. (]
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Illustration

Republic of Math @republicofmath - 11m
yll Blue is contour plot of cyclic sum in inequality; red is 3/7 on the a-b plane
Y @CutTheKnotMath That look enchanting. But what is it?

Let a,b,e >0. Prove that

a’ " b* i i
b?(5a +2b) ¢? (90 +2¢)  a?(5c+ 2a)

>3
=

Acknowledgment (by Alexander Bogomolny).
The problem above has been posted on the CutTheKnotMath facebook

page by Daniel Sitaru. The problem came from his book Math Storm.
Solution 1 is by Imad Zak (Lebanon); Solution 2 is by Kevin Soto Pala-
cios (Peru); Solution 3 is by Diego Alvariz (India); Solution 4 is by Daniel
Sitaru (Romania); Solution 5 is by Hung Nguyen Viet (Vietnam).

25. AN INEQUALITY WITH ABSOLUTE VALUES
Prove that, for a,b,c € (—1,1),
2|al

> la| + [b] T
- >
1—¢2 — 1—be
cycl cycl

Proposed by Daniel Sitaru - Romania

Proof 1 (by Daniel Sitaru).
Since a € (—1,1),a? < 1,1 —a? > 0, ;=5 > 0. Similarly, =5 > 0
By the AM-GM inequality,

W 1 N 1 S 5 1 1
1—a2 1-—0b27~ 1—a2 1-—052
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However,
(1 —ab)®? =1 —2ab+ a®b? > 1 — (a® + b?) — a?b®> = (1 — a®)(1 — b?),

1 1
so that > . This, together with [1| yields
(1 —a2)(1—b2) = (1 — ab)? P ro8 v Y

1 N 1o, 1 2
1—a? 1-02~""\(1—-ab)? 1—ab

So too,
|| |c| 2|c]
+ >
1—a?2 1—-0b%2 " 1—ab
Similarly,

|al |al 2|a|
+ >
1—-b2 1—¢c2 " 1-—bc
ol lbl 2]
1—¢2 1—a2 " 1—ca
Adding the three gives the required inequality. The equality is achieved for

a=b=c.
O

Proof 2 (by Kevin Soto Palacios - Huarmey - Peru).
Using Bergstrém inquality and, subsequently, the obvious b? + c¢? > 2bc,

1 4 1 1+1)2 4 2
1—b2 1—¢2 " 2—-b2—¢2"2—-2bc 1-—bc
so that
|a| |lal 2|a|
—+ > .
1 — b2 1—c2 1 — bc
Similarly,
ol bl 2l
9
1—¢2 1—a?2 — 1—-ca
|c] |c| 2c|
+ >

1—a2 1-b2 7 1—ab
Adding the three gives the required inequality. The equality is achieved for
a=b=c.
O

Acknowledgment (by Alexander Bogomolny)
Daniel Sitaru has kindly posted the above problem (from his book Math
Accent), with a solution (Proof 1), at the CutTheKnotMathfacebook
page. He later added another solution (Proof 2) by Kevin Soto Pala-
cios.
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26. PYTHAGOREAN PERIMETER THEOREM

Point H is the foot of the altitude in AABC to the side BC.
A

B H C
Let p(A) be the perimeter of triangle A. Prove that

(p(ABH))2+(p(ACH))2 =(p(ABC))2
if ZBAC = 90°

Proposed by Miguel Ochoa Sanchez - Peru

Proof (by Claudia Nanuti, Diana Trdilescu, Daniel Sitaru, Leo Giugiuc).

We choose H = (0,0), A = (0,1), B = (—b,0),C = (¢,0), with b,c > 0.
We have BH = b,CH = c,AH =1,BC = b+ ¢, AB = v/b? + 1,

AC = +/c2+ 1. We need to prove that the conditions AC 1 AB is
equivalent to

1+ @+ VD) +[1+ e+ Ve T1)| =
=[6+ VB D) 4 e+ Ve 1]

The latter is transformed into

14+2b+vVb2+1)4+14+2(c++Ve2+1)=2(b+ Vb2 +1)(c+ V2 + 1),
or, L4+ (b+ vb2+1)+ (c+ V% + )—(b—i-\/b2 (c+ V2 +1).

Introduce x,y > 1 such that b = m2;1 . Then

b++vb24+1 =2 and c+ +vc2+1 =1y. So that the identity at hand
becomes 1 + © + y = xy.

To make it clear, the problem has been reduced to showing that the
condition AC | AB is euqivalent to bc = 1 which, in turn, is equivalent
to (2 — 1)(y? — 1) = 4zy, and this is algebraically manipulated into
(zy — 1)2 = (¢ + y)?. Since z,y > 1,2y — 1 = x + y, as required. a

and ¢ =
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27. THREE CIRCLES AND AREA

Points O1 and O lie on the diameter AB of circle (O) . Circle O1(r)
is tangent to (O) at A, O2(r) is tangent to (O) at B, for some r > 0.P
is on (O); PT is tangent to O1(r), PQ is tangent to Oz(r).

Prove that @ = [AO1PO;] , where [F| denotes the area of shape F.

Demostrar que :

(PT)(PQ)
2
Propuesto Por : Miguel Ochoa

[01PO;] =

Proposed by Miguel Ochoa Sanchez - Peru

Solution by Claudia Nanuti, Diana Trailescu, Daniel Sitaru, Leo Giugiuc.
Assume (O) is described by the equation z? + y? = 1; A = (—1,0), B =
(1,0),

P = (cost,sint), with ¢t € (0,7). Obviously, Oy = (-1 4 r,0) and
O; = (1 — r,0). From here

1 2 —
[AO1PO;] = 50102 -sint = sint = (1 — r)sint

On the other hand, by the Pythagorean theorem in triangles PO,T and
PCO,,

or the Power of a Point theorem,
0.P% — 72 = PT? = 2(1 — r)(1 + cost), or PT = /2(1 — r)(1 + cost).

Similarly, PQ = \/2(1 — r)(1 — cost).
It thus follows that PR - PQ = 2(1 — r) sint, as expected. O
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28. A ONE-SIDED INEQUALITY IN TRIANGLE

Prove that in any acute AABC' the following inequality holds:

9

3ab
BA,'CBI'AC,—'-BAH‘CB”'AC”+BA”"CB”I'AC”I< aéc

where AA’, BB’,CC’ are the angle bisectors, AA"”, BB”,CC"” are the

altitudes, and AA”’, BB, CC’” the symmedians; a, b, ¢ the side lengths
of triangle.

Proposed by Daniel Sitaru - Romania

Proof by (Daniel Sitaru - Romania).

In an acute triangle, the angle bisector, the altitude, and the symmedian

from the same vertex, all fall on the same side from the midpoint of the
opposite side.

| " m, pr o
-—li’-q iA "er »

For this reason, we have

BA' < g,CB’ <bucr <l

2 2
" g " 9 1" E
BA <2,CB <2,AC <2,

b c

BAI// g CB/// e Acl/l -

< 5 < 2 < 5
Multiplying the rows and adding the results yields the required inequal-
ity. [
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Observations (by Alexander Bogomolny).
To clarify the inequalities, we make a couple of observations.

.

L laan

=
o]

e

)
.
'm

First, if M is the midpoint of AC, then A’ lies between A” and M.
Second, if D is the midpoint of the arc BC, opposite A and E is the
second intersection of AM with the circumcircle (ABC'), then
/A'’AA" = /DAE < /CAD = /BAD, implying that A’ is between B
and M.

Acknowledgment (by Alexander Bogomolny).
The problem has been kindly posted by Daniel Sitaru at the CutThe-
KnotMath facebook page. The problem came from his book Math Storm.

29. TWO CONDITIONS FOR A TRIANGLE TO BE EQUILATERAL

Consider two statements in AABC':

a’+(2n+1a+n?2=0>

P:3neZ*,{b®*+2n+1)b+n?=c

2+ 2n+1)c+n?=a

and
Q:ra+rb+7'c=la+lb+lc
Prove that P & Q, i.e., that the two statements are equivalent.
Proposed by Daniel Sitaru - Romania

(The problem uses notations common in triangle geometry.)

Note (by Alexander Bogomolny).
Note that the proofs below in fact show more, viz., that both condi-
tions only hold for equilateral triangle, which makes them automatically
equivalent.



47

Solution 1 (by Soumava Chakraborty - Kolkata - India).
Adding up the three equation in P,

Za2+(2n—|—1)2a—|—3n2 = Za,
cycl cycl cycl

i.e.,

Za2+2n2a+3n2=0,

cycl cyle

which we rewrite as
3n2+ <2Za)n+2a2 = 0.
cycl cycl

Since, it is given the equation has a solution in integers, hence in reals,
the disciminant A of this qudratic (in n) equation is not negative

A :4(2 a>2—122a2 >0

cycl cycl

This is equivalent to

Za2+22ab—32a220,

cycl cycl cycl
which reduce to
g ab > E a?,
cycl cycl

but, by say, the Rearrangement inequality, we have
Sab< Y
cycl cycl

implying that

Zab:Zaz.

cycl cycl

> (a—b)?*=0,

cycl

From here

so that a = b = c.
For @), we have

Y ra=4R+7 2> ma> > la,

cycl cycl cycl

with equality only when a = b = c. (]

Solution 2 (by Alexander Bogomolny).
For any n € Z*, the graph of the function y = f(z) = 2?2+ (2n+1)x +n?
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is tangent to the diagonal y = x for * = —n, otherwise being above the
diagonal.

SN

5
-~ i | —_—

_“_HTT#F,A#"" ol

Iterations k41 = f(xr) converge to the point of tangency, never forming
a 3 - loop. It follows, therefore, from the definition of P that it may only
hold when a = b = c.

Concerning Q, with 2p = a + b + ¢, we have, say, by the AM-GM

inequality,
S
la =vp(p—a) Vp(p —a) = ;
V(p—a)(p—o)
by Heron’s formula. (The equality is only for b = ¢.) On the other hand,

say rq = p_ia. Thus,

2V
bc<
b+ec —

S

I, <
~ V(-b(p—-c)

But then, by the Cauchy - Schwarz inequality, we get

ZlaS Z\/rb""cg""a+""b+7‘ca

cycl cycl

= /TpTec.

where the first inequality becomes equality only for a = b = ¢ while the
second is the equality for r, = r, = r., which is the same. ([l

Acknowledgment (by Alexander Bogomolny).
The above problem from the Romanian Mathematical Magazine and a
solution (Solution 1 by Soumava Chakraborty, Kolkata, India) has been
kindly posted at the CutTheKnotMath facebook page by Daniel Sitaru.

30. AN ALL - INCLUSIVE INEQUALITY II
Prove that in an acute AABC the following relationship holds

(V)& )es

cycl cycl
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where mg, myp, m. are the medians; hqy, hy, he the altitudes; l,,lp, 1. the
angle bisectors in triangle ABC, R and r its circumradius and
inradius, respectively.

Proposed by Daniel Sitaru - Romania

Solution 1 (by Soumava Chakraborty - Kolkata - India).

LHS < ( N ma Z;)g (va) Zhi Zhi
cycl cyecl % cycl cycl % cycl " ®

for l, > h,, etc, implying > li <> hi Thus,

o () (52 (5

cycl cycl cycl

where s = # is the semiperimeter, S the area of AABC.
Using Bottema’s inequality, mqs + mp + me < 4R + 71,

_ 4R+ r

LHS = (Z ma> (%) < (4R—|—r)(r—ss) =—.
cyel

Thus, suffice it to show that % < %, but this is equivalent to
8R + 2r < 9R, i.e., Euler’s inequality R > 2r. O

Solution 2 (by Daniel Sitaru - Romania).
Let AA’ = mg;0A’ L BC;0 - center of the circumcircle (ABC).

A

In AABC,
AA' < A0+ 0A
It follows that

A
mg < RcosA+ R = R(cosA+1) :R<2cos25 —1—|—1)

A
= 2Rcos? =
2
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Further,

Ma _ 2R cos? % _ 2Rp(p — a) _ Rap(p — a) _
ha =  hq be- 23 beS
__ Ra’p(p—a) Ra’p(p—a) aP(p—a) a’p(p—a)
abcS 4RS? 452 4rpS
_ad*(p—a)
- 4r?p

Adding to that two analogous inequalities,

Mg a?(p — a) 1 9 3
DLl SN S PR S

2 T 4p2
cycl @ cycl 4r p 4r p

We are going to use the following two identities:

Z a? = 2s® — 8Rr — 272, Z a® = s(2s® — 12Rr — 672).

cycl cycl
With these,
Ma o (19(2192 — 8Rr — 2r?) — p(2p® — 12Rr — 6r2))
hg 4r2p
1
= i (2p2 — 8Rr — 2% — 2p%2 + 12Rr + 67'2)
1 R
— 2y _ ~
= g (4Br+4rf) = — 4 1.
For the record,
Mg R
1 — < —+1.
L Z he — 7 +
cycl
From that and I, > h,, etc., also
me R
2 — < — 4 1.
@) Z lo —r +

cycl

By the Cauchy - Schwarz inequality, using
2
mg mg meg R
3 Ta g <( —)12 12 +12) = 3 —<3<— 1).
o (X)) S(Thejarerern oy <oy
Using 2 we similarly get

(4) (Z\/TJ)ZS 3(§+1)

The product of [3| and |4, along with the Euler inequality, R > 2r yields
the required inequality:

(=) (Vi) s o)




and, finally,
3R
Mg Mg == IR
E o E o <32 =__—,
< la ) < hg >_ r 2r

Solution 8 (by Kevin Soto Palacios - Huarmey - Peru).
We shall use the following facts:

(1) la Z haalb Z hba lc Z hc
and

R m, R my, R me
(2) 22— = >

2r hg 27 hy 27 c
So we have

mg myp me R

A — — — < 34/ —
(A) h. + I + S -

and, therefore, also

(B) E_ﬁ_ ﬁ_'_ ma<3 E
\/la \/lb \/lc - 2r

The product of [A] and [B] is exactly the required inequality.

Solution 4 (by Kevin Soto Palacios - Huarmey - Peru).
We know that

la Z htulb Z hbalc 2 hca

IR
mu+mb+mcS4R+rS?7
1 1 1 1

he The  he 1
By the Cauchy - Schwarz inequality,

Mg + myp + me 2< ( + + )( 1 + 1 +
— — — me +mp +me)|— + —
Vhe " Ve Ve ) = b ha = hp

It follows that

The product of the two gives the required inequality.

It so, also

Acknowledgment (by Alezander Bogomolny).

1

he

)-
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O

The problem has been offered by Daniel Sitaru at the CutTheKnotMath
facebook page; solutions added via comments and private communica-
tion. Solution 1 is by Soumava Chakraborty; Solution 2 is by Daniel
Sitaru; Solution 3 and 4 are by Kevin Soto Palacios. The problem came
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from Dan’s book Math Power and has been published at the Romanian
Mathematical Magazine.

31. A CYCLING INEQUALITY WITH INTEGRALS

Prove that, fora,b,c > 2,
2bc(a) + 2ca2(b) + 2abQ(c) < a? + b* + c?
1 2
where Q(t) = /

——d=x
o 1+tx24 x4
Proposed by Daniel Sitaru - Romania

Proof (by Ravi Prakash - New Delhi - India).
Note that

1—=x

11 —2?)(—-1)z?
(1) = dz < 0,
W=, Gtz ranz® <

for t > 2, making Q(t) strictly decreasing on [2,00). Further

9(2)_/1 1—x? d _/1[ 2 1 ]d
o 1422420 ol a2z 14227

71‘_/1 dx
4 Jo 1+ 22

1 1 2 1 12(x24+1)—2
T ‘ —|—/ 7$( ?) dr = +/ —(:13 +1) dx
0 0

But

“1ta2l (1+z2)2 2 (1 + 22)2
_1+7r Q(2)
2 4 ’

implying ©Q(2) = % such that, for t > 2,0 < Q(t) < % It follows that
2bcf2(a) + 2caf2(b) 4+ 2abQ2(c) < bec+ ca + ab <
<b2—i—c2 c? + a2 a? + b?

2 2 2
St t 5 =a+b4cn

O

Acknowledgment (by Alezander Bogomolny).
Daniel Sitaru has kindly posted the above problem form the Romanian
Mathematical Magazine (and his book Math Accent), with a proof by
Ravi Prakash (India), at the CutTheKnotMath facebook page.
Note that the penultimate step in the proof could be shortened by notic-
ing that

1— 22 x
/(1+m2)2dm: 1+m2+C
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32. A CYCLIC INEQUALITY IN TRIANGLE

Prove that in any AABC,
Z a®(2s — a) S 27a%b?c?

i

o b(2s—0b) — s2
a+b+c ..
wheres = — s the semiperimeter of AABC.

Proposed by Daniel Sitaru - Romania

Proof 1 (by Kevin Soto Palacios - Huarmey - Peru).

By the AM-GM inequality,
(a+b+c)? a3(2s — a) S 9/ (abc
4 b(2s —b) — 4
cycl

) -3 H a?(2s — a)3.

cycl
Thus, suffice it to show that
9/ (abc)?
(A) M -3 3 H a2(2s — a)? > 27a%b*c32.
1 cycl

Note that
(B) (2s—a)(2s—b)(2s—c) = (a+b)(b+ c)(c+ a) > 8abc.
Combining [A] and [B] we get

9/ (abc)? 9/ (abc)?

% © 3 H a?(2s —a)? > % -3/ (abc)? - 64(abc)?

cycl
= 27a%b2c2.

Proof 2 (by Soumava Chakraborty - Kolkata - India).

By the AM-GM inequality,
LHS > 3¥a?b2c2(a + b)2(b + c)2(c + a)2.
Suffice it to show that

729a5b% ¢
H a*(a+0b)% > feva v e
56
cycl
We have a sequence of equivalent statements:
27(a + b+ ¢)? 432 R3r?
[[at+p>T@tbeer

)
3 s
cycl

432R?*r?
2abc + H ab(2s —c¢) > 7r, 252 Z ab — 4Rr® > 432R?r2,

cycl cycl
sz(s2 + 4Rr + 7'2) — 2Rrs? — 216R?>r%2 >0
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To this we’ll apply Gerretsen’s inequality s®> > 16 Rr — 5r2:
s?(s® +4Rr + r?) — 2Rrs® — 216 R*r% >
> (16Rr — 572)% 4+ (16 Rr — 5r2)(2Rr 4 r?) — 216 R%r2.
Suffice it to show that:
(16Rr — 5r%)2 + (16 Rr — 572)(2Rr + r?) — 216 R*r? > 0.

But this is equivalent to 36 R?2 — 77Rr + 1072 > 0, or,
(R—2r)(36 R—5r) > 0, which is true due to Euler’s inequality R > 2r. O

Proof 3 (by Alexzander Bogomolny).

By the AM-GM inequality, LHS > 3/a?b2c?(a + b)2(b + ¢)2(c + a)2.
Suffice it to show that

3346p6 6
H a®(a+0b)% > %
cycl s
This is equivalent to
(*) (a+b+c)® [[(a+b) > 6%a2b%c2.

cycl
In this form the inequality holds for a,b,c > 0 , not necessarily the sides
of a triangle. Now, (a + b+ ¢)® > 33abc, whereas
a+b>2vVab,b+c > 2vbc,c+a > 2y/ca . Multiplying the four gives (|

Acknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly posted the above problem from his book Math
Accent, with two proofs - one (Proof 1) by Kevin Soto Palacios (Peru),
the other (Proof 2) by Soumava Chakraborty (India), at the CutThe-
KnotMath facebook page.

33. A CYCLCIC INEQUALITY IN TRIANGLE II

Prove that in any AABC,
a? b2 c2? )
\4 bc(7+7+T) 216(\/54‘\/54‘\/5)57

Proposed by Daniel Sitaru - Romania

Proof 1 (by Soumava Pal - Kolkata - India).

WLOG, assume a > b > c. Then a? > b%? > c2? but ‘/1& < % < %
. First employing the Rearrangement inequality and then the AM-GM

inequality,

Z as +b2 4¢3 > 3vVabe

cycl cycl
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Thus,

(1) Z — > 3V abe.
cycl

Using the Rearrangement inequality the second time and then the
Chebyshev ’s inequality,

Z >y 2 —a\/5+b\/5+6\/5>%(a+b+6)(\/5+\/5+\/5)

GaVvb  Lava
So that

@) Z 2(Za)(Zva)
Multiplying [[] and 2, we get

(3) @(Z;) > (abe)(a+ b+ c)(va+ Vb + ve).

cycl

Definex=a+b—c,y=b+c—a,z=c+a—>b. Then z+y > 2,/xy and
b > /xy. Similarly, a > +/xz and ¢ > /yz. It follows that abc > xy-=.
Thus we may continue

bc(z )z (abe)(a+b+c)(vVa+ vVb++e) >

cy cl

zyz(a+b+c)(va+ vVb+ ) =165%(va + Vb + c,

as required. [l

Proof 2 (by Soumitra Mandal - nickname Diego Alvariz - Chandar Nagore - India).

Since (z + y)(y + 2)(z + ) > 8xyz,

T T

cycl cycl cycl cycl
3(a+b+c)?
Z (clyICl(a * k * C)> chcl \/a
(Z ﬁ)(a-l—b-l—c)(l_[(a—kb—c)): (vVa + Vb4 4/c)1652.
cycl cycl

Acknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly posted the above problem form his book Math
Accent, with two proofs - one (Proof 1) by Soumava Pal, the other (Proof
2) by Diego Alvariz, at the CutTheKnotMath facebook page.



34. DAN SITARU’S INEQUALITY WITH TANGENTS

Prove that in anyAABC,
Z V'tan Av'tan B(v/tan A 4 V'tan B) < 2tan A tan B tan C

cycl

Proposed by Daniel Sitaru - Romania

Proof 1 (by Daniel Sitaru - Romania,).

The starting point is Heinz’s inequality:

For z,y > 0,a € [0,1],z' *y* + z*y' "> <z + y.
We apply Heingz’s inequality with a = %

2 1 1 2
z3ys +xsys <z +y

and set * = tan A and y = tan B to obtain

\e'/tanAxs/tanB(\s/tanA + \3/tanB) <tan A + tan B
Similarly we get

e/tanA\S/tanB(\S/tanA + \3/tanB) < tanA + tan B

Vtan Cvtan A(V'tan C + V'tan A) < tan C + tan Q.
yields the required inequality. ([
Proof 2 (by Ritesh Dutta - India).

Let tan3s (A) = A;jtans (B) = b, and tans (C) = c. In any triangle
A+ B+C=a®+b3+c®=a3b3c3.
After the substitution we have to prove that
E cyclab(a + b) < 2a*b*c?®
Now,

a2 2 abla
Sabatt) <Y T @ rpy = Far 4 3 PO

cycl cycl cycl

It follows that
Z ab(a+0b) <2 z a® = 2a*b*c®

cycl cycl

O

Acknowledgment (by Alexander Bogomolny)
Dan Sitaru has kindly posted the problem, with a solution (Proof 1), at
the CutTheKnotMath facebook page. Proof 2 is by Ritesh Dutta (India).
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35. VECTOR ALGEBRA IN TETRAHEDRON
Let ABCDbe a tetrahedron where: AC = Vv11;CD = 3; AD = vV 14;

AB = +/3; BC = 2; BD = V13.

¥

Prove that: m(Z(AB,CD)) > 90°.
Proposed by Daniel Sitaru - Romania

Proof (by Daniel Sitaru - Romania,).

We place the origin at D and (yOz) = (BCD). It follows that

D = (0,0,0) and C = (0,3,0) because CD = 3.

Take B = (0,a,b); B € (yOz), and (¢,d,€e),a,b,c,d,e € R. Then, via the
Pythagorean theorem,

BC =2 V(a—3)2+b2=2

AC = V11 V2 +dZ+e? =414

BD =13 = (+/a?>+b>=+13

AD = /14 Ve2 4+ (d—3)2+e2 =11

AB =+/3 Ve2+(d—a)2+ (b—e)2=+3
Va—3)24+b2=2 a2 —6a+9+0b2=14
V2 +d2+e2 =14 2+d>+e?=14
VaZ b2 =13 = Ja®>+b*> =13
\/c2+(d—3)2—|—ez:\/ﬁ 2+ (d—3)2+e2=11
Ve2+(d—a)2+ (b—e)2 =11 c+(d—a)+(b—-¢e)P=e€

(Il

Further,

134+49—-6a=4=a=3
b®=4=0b=2
2+d>—6d+9+e2=11=>d=2
2+1+(2—-€e)?=3=>e=3;c=1
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Which is to say that B = (0,3,2) and A = (1,2, 3). It follows (in custom-
ary notations) that AB = —i+j—kand CD = —3j so that E@ = -3,
implying cos é(ﬁ, @) < 0, so that A(zﬁ, @) > 90°.

Remark (by Gregoire Nicollier)

A proof without any computation! Let Cx and Dx* be the orthogonal
projections of C and D on the line AB. The angle between the vectors
AB and C % Dx have opposite directions. This is here clearly the case
(without any sketch!) as AABC is obtuse at B whereas AABD is almost
isosceles.

36. AN ELEMENTARY INEQUALITY BY NON-ELEMTARY
MEANS

Prove that, for a > 0,
12(asina + cosa — 1)2 < 2a?* + a®sin2a.

Proposed by Daniel Sitaru - Romania

Proof (by Daniel Sitaru - Romania,).

By the Cauchy - Schwarz inequality,

</0a:l:coswda:>2S (/Oa :132dw) </0a cos? :cdw).

We continue by evaluating integrals:

2
. a @ a® %1+ cos2zx
xsinx —/ sinz | < —/ ——dx
0 0 - 3 0 2

a3 a a
(asina—i—cosa—cosO)ZS—(az )
6 0 0

1
6(asina + cosa — 1)2 < a3(a+ Esin2a>.

+ L 2
— sin 2z
2

12(asina + cosa — 1)2 < 2a?* + a®sin2a.

Acknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly communicated in private message the above
problem and its solutions. There is little doubt that the expression
asina + cos a betrays the integral origins of the problem. However, the
inequality itself is quite elementary looking which makes one curious
whether it has a more elementary solution that does not invoke calcu-
lus.
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37. INTEGRAL OF A PIECE - WISE FUNCTION

For a,b,c € (0,0),a<b<c;f:[0,a] = [0,b] and g:[0,b] — [0,C]
both continuous, surjective and strictly increasing functions.
Prove that

1 /@ 1 f¢
5 | Go9r@dat— [ eg A @)de < ac.
2 Jo a Jo
Proposed by Daniel Sitaru - Romania

Solution.

First of all, note that h = gof : [0,a] — [0, ¢] is a continuos, surjective and
strictly increasing function. In particular, h(a) =cand h=! = f~log—1.
We thus have to prove that
1 /¢ 1 [¢

—/ h?(z)dx + —/ (h"H2(x)dz < ac.
c Jo a jo
Next we observe that h(z) < c and h~!(z) < a and deduce that

1 a 1 Cc a c
—/ h?(x)dx + —/ (h™Y)2dx < / h(x)dx +/ h=(x)dz.
cJo aJo 0 0

To this we apply the extreme case of Young’s inequality that may be
called Young’s identity. The latter is illustrated by the diagram below:

The red represents [, h(z)dx and the orange are represents [ h~!(z)dzx.
It follows that [ h(z)dz + [; h~!(z)dz = ac.
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Acknowledgment (by Alexander Bogomolny)

The problem from the Romanian Mathematical Magazine (Problem
44) has been posted by Daniel Sitaru at the CutTheKnotMath facebook
page. Leo Giugiuc and Daniel Sitaru commented with practically iden-
tical solutions. O

38. TWO - TRIANGLE INEQUALITY II

Given two triangles: ABC and A’B’'C’, prove that

a+b+c< cos%—i—cos%—i—cos% 3v3R'

3v3R cos%+c0s%+cos% “a +b 4+

Proposed by Daniel Sitaru - Romania

Proof (by Kevin Soto Palacios - Huarmey - Peru).

We shall prove only the left inequality, as the right one is obtained from

that by swapping A with A’,a with a’, etc.

Observe that sin A 4 sin B = 2sin A';B cos AQB < 2cos %, implying that
C

2

A B
sin A+ sinB +sinC < COSE +cos§—|—cos

It follows by the Law of Sines that

a+b+c X X X A C C
——r =smA+smB—|—smCScos;—l—cos;—l—cos—

2
In addition, we know that

3v3 S A’ N B’ 4 c’
_— COS — COS — COSsS —
2 = 2 2 2

Dividing one by another we obtain
a+b+c cos§+cos§+cos%

—_ ’ ’ ’
3v3R cos A7 + cos % + cos %

O

Acknowledgment (by Alexander Bogomolny)
Dan Sitaru has kindly posted the above problem, with two proofs by
Kevin Soto Palacios (Peru), at CutTheKnotMath facebook page.

39. INEQUALITY WITH POWERS AND RADICALS

Prove that, for positive reala,b, cwe have:
S VaiEe > Y Yaspioen
cycl cycl
Proposed by Daniel Sitaru - Romania



Proof 1 (by Dang Thanh Tung - Vietnam).

The inequality is equivalent to

1 1
Vatd > L ¥ Waproen
— > 5
Vv abe cyel Vv abe cyel
which translates into

6 a 30 a
> had
2x22 Wy

cycl cycl

Defining « = 3\0/% , etc., the problem reduces to showing that
IR PE
cycl cycl
provided z,y,z > 0 and xyz = 1. The AM-GM inequality, yields
z®+1+4+1+1+1> 5z,

Y +1+1+1+1> 5y,
224141414125z
Summing up shows that

Zw525zw—12=zw+4<zm—3>

cycl cycl cycl cycl

= Zw+4<2w—33 Hw)Z Zw
cycl cycl cycl cycl
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because, by AM-GM inequality, * + y + z > 3&xyz. The equality is

attained whenx =y =2 =1, i.e., whena=b=c.

Proof 2 (by Ravi Prakash - New Delhi - India,).

By the AM-GM inequality,

7(ab203)% + 4(a3bcz)% + 4(a2b3c)% > (a7bl4021a12b408a8b1204)6X115

> 15(a27b30c3%) %0
= 15(a9b10011)%.
Similarly,
4(abzc3)% + 7(a3bcz)% + 4(a2b3c)% > 15(a11b9010)%,
4(ab203)% + 4(a3bcz)% + 7(a2b3c)% > 15(a10b1109)%.

Adding the three and dividing by 15 gives the required inequality.

Proof 3 (by Alexander Bogomolny).

O

This is also a direct consequence of Muirhead’s inequality. Indeed, let
a :{ 3 2. 1} and 3 :{ a0 2 } Then a majorizes 3 which imediately

6’6’6 30°30° 30
implies the given inequality.

O
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Acknowledgment (by Alexander Bogomolny)
The problem from his book Math Accent has been posted by Dan Sitaru
at the CutTheKnotMath facebook page. He also added two solutions.
Proof 1 by Dang Thanh Tung and Proof 2 by Ravi Prakash.

40. BROCARD POINT AND A RELATION OF CIRCUMRADII

Q is the first Brocard point of AABC.R,, Ry, R. are the circumradii of
triangles QBC,QC A, QAB, respectively.
Prove that R,RyR. = R3,
where R is the circumradius of AABC.
Proposed by Mehmet Sahin - Ankara - Turkey

Proof 1 (by Daniel Sitaru - Romania,).

Let w denote the Brocard angle. Then
c __ 2RsinC
2sin(mr —w — (B —w)) 2sinB
Two more relations are obtained in the same manner. The product of
the three solves the problem:

cycl cycl

Proof 2 (by Leonard Giugiuc - Romania,).

WLOG, assume A = (—2u,0),B = (2v,0),C = (0,2). It’s well known
that R? = (1 4+ u?)(1 4+ v2?). Let’s find R, first. The midpoint of AB is
(v — u,0); the perpendicular at B to BC has the equation vz — y = 2v2,
so that the center of (2BC) is at (v — u,v(u + v)), implying

2 242
R2 = (u+v)?(1+v?). Similarly, R} = S0 and R. = (1 4 u?)%
Clearly, R,R,R. = R3. O

Proof 8 (by Mehmet Sahin - Ankara - Turkey).

Clearly, /BQC = 180°, /CQA = 180° — A, ZAQB = 180° — B. Using the
Law of Sines in triangles in QBC,QC A, QAB, we get

a
— = 2R,
sin(180° — C) ’
b = 2R
sin(180° — A)
C
2R,

sin(180° — B) -
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so that
a b c

sinC * Sin A ® sin ¢
. _ b _
In AABC,R_ 2si?1A — 2sinB 25ich°

Combining the finds,
a b c

3
2sinA 2sinB 2sinC

b

R, RyR. =
as desired.
Acknowledgment (by Alexander Bogomolny)

The problem has been kindly posted at the CutTheKnotMath facebook

page by Mehmet Sahin (Turkey). Proof 1 is by Daniel Sitaru; Proof 2
is by Leo Giugiuc; Proof 3 is by Mehmet Sahin. ([l

41. AN INTEGRAL INEQUALITY FROM THE RMM

If f:[0,1] — (0,00), f derivable, f' continuous,
.fl(w) = f/(l —x),Vx € [0,1] then:
1
| 1@dz = V5@ 7D

Proposed by Daniel Sitaru - Romania

Proof 1 (by Safal Das Biswas - India).

The condition f/(z) = f’(1—=z)impliesf(x)+ f(1—x) = C, a constant, for
x € [0,1]. This is a kind of situation that has been considered elsewhere
on three different occasions.

1
If I = / f(x)dz, then
0

2l = /Ol(f(w) + £~ ))dw = C = f(z) + f(1 @),

for any =z € [0,1]. In particular, with = 0,21 = f(0) 4+ f(1). It then
follows by the AM-GM inequality that

1= OIS @
(]

Proof 2 (by Soumitra Mandal - nickname Diego Alvariz - Chandar Nagore -India).

1
With I = / f(x)dz, and integrating by parts,
0

1

1=[er@], - | "of (@)de = £(1) — [ 2@z



r+ | Cef (1 - )d(1 - o)
f+ [ PO - @) - @) - / (-0 (- 2)d - o)
s+ [ @i~ [ s @
= f(1) + f(0) + /01 [(Zc(m) /01 f’(sc)dsc] dx

FQ) + £(0) — / F(x)dz = £(1) + £(0) — 1,

£(0) + £(1)
2

implying I = >V F(0)f(1)

42. A CYCLING INEQUALITY WITH INTEGRALS I1

Prove that, for a,b,c > 0,
Q(a,b,c) + Q(b,c,a) + Q2c,a,b) <1,

1
where r) = —dx.
(pyq,7) /0 SRPTp——

Proposed by Daniel Sitaru - Romania

mp

Proof (by Daniel Sitaru - Romania,).

Introduce u = z%,v = zb,w = z°. For = € [0,1],u,v,w € [0,1], such
that also 1 — u,1 —v,1 — w € [0,1]. From here, say (1 —u)(1 —v) > 0,
implying 1 4+ uv > u + v and, subsequently,

1+w+uv > u—+ v+ w.
1 1

+wt+uv  ut+v+w
w w

<
l1+w+uv  ut+v+w

o s u u v v
Sll’l’lllal‘ly, 14u+tuw S u+v+w and 14+v4+wu < utvtw *
we obtain

Therefore,

and

Adding the three up

3 I S S

yel 1+u+vw — cyclu—l-v—i—w
Taking integral form 0 to 1 we obtain the required inequality. Equality
is only possible for a =b=c¢ = 0. (|

Acknowledgment (by Alexander Bogomolny)
Daniel Sitaru has kindly posted the above problem from his book Math
Accent, at the CutTheKnotMath facebook page. He later communicated
privately the solution above.
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43. LEO’S LEMMA, SECOND APPLIACATION

Assume in AABC, points M and N are on BC in this order B, M, N, C.

Then (AB — AC)(BM — CN) > 0.
Proposed (by Daniel Sitaru - Romania)

Proof (by Alexander Bogomolny).

Assume, without loss of generality (http://www.cut-the-knot.org/blue/
WLOG.shtml), that AB > AC. Then ZACB > ZABC.
Since AM AN is isosceles, ZAMB = ZANC, implying that
LBAM > LCAN. Obviously, ZBAM + LZCAN < w, implying by Leo
Giugiuc’s Lemma
http://www.cut-the-knot.org/arithmetic/algebra/LeosLemma.shtml), that

sin /BAM > sin Z/CAN.

Set§ = LZAMB = ZANC. By the Law of Sines (http://www.cut-the-knot.
org/pythagoras/cosine2.shtml), in triangles ABM and ACN, and due to
the assumption AB > AC,

BM _ AB S AC _ CN
sin/BAM sind ~ sind sin/ZCAN
such that

sin/BAM
BM=—34MCN>CN
sin Z/CAN

because, as we’ve seen, AB > AC implies sin /BAM > sin /C AN.

Thus, in this case, indeed, (AB — AC)(BM — CN) > 0. The assumption
AB < AC - by symmetry - leads to the same result. The case AB = AC
is even more straightforward. Il


http://www.cut-the-knot.org/blue/WLOG.shtml
http://www.cut-the-knot.org/blue/WLOG.shtml
http://www.cut-the-knot.org/arithmetic/algebra/LeosLemma.shtml
http://www.cut-the-knot.org/pythagoras/cosine2.shtml)
http://www.cut-the-knot.org/pythagoras/cosine2.shtml)
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44. AN EQUATION IN DETERMINANTS

Dan Sitaru has posted the following problem and its solution at the
CutTheKnotMath facebook page:
Solve in M4(Z) the equation: det(X*+ I,) = 2013

Proposed by Daniel Sitaru - Romania

Solution (by Alexander Bogomolny).

Observe that X4 + I, = (X% — X2+ I)(X? + X+/2 + I;) from which
det(X* + I,) = (m — nv2)(m +nv2) = m? — 2n%;m,n € Z.
Now, m? — 2n? = 2013 is same as m? — 2013 = 2n2. The latter implies
m € 27 + 1, and consequently m? € 8Z 4+ 1. We’ll show that is
impossible by considering two case.

If n € 27 then 2n2 € 87 and m2 — 2n2? € 87 + 1 which means that
2013 € 8Z + 1. But this is not so because 2013 mod 8 = 5.

If n € 27 + 1 then n? € 8Z so that m?2 — 2n2 € 8Z + 7, or 2013 € 8Z + 5,
but this is as impossible as the preavious case.

Thus the equation has no solutions.

O

Remark (by Alezander Bogomolny)

The problem can be stated as a scaler or a polynomial equation, with
only minor typographical changes.

The problem poses the question for the year 2013. The above solution
will work for any year residue of division by 8 is neither 1 nor 7. Thus it
will not work out (as it was pointed out in the comments) for 2015; there
is enough time to investigate whether the matrix equation has or does
not have a solution for a coming year. The scalar equivalent, obviously,
does not dose have a solution in integers for most of the years.

45. AN INNOVATIVE RECURRENCE

Assume a1,a2,a3,a4 € N and a,, = n + 4.

Find azo012 + a2013 + a2014 + a201s.
Proposed by Daniel Sitaru, Leonard Giugiuc - Romania

Solution by proposers, comments by Alexander Bogomolny:

Let’s use functional notations: f(n) = a,, where f: N — N.
Then f(f(n)) =n+ 4. The trick is to express f(f(f(n))) in two ways:
one is to replace n with f(n), the other is to apply f to both sides
of the identity:

FF(f(n))) = f(n) +4
FF(f(n))) = f(n+4).


https://www.facebook.com/photo.php?fbid=1410419435954529&set=o.96389292832&type=1&theater
https://www.facebook.com/photo.php?fbid=1410419435954529&set=o.96389292832&type=1&theater
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From this f(n+4) = f(n) + 4.

Repeating the steps, f(n+4) = f(n)+4 = f(n—4)+2-4 = f(n—8)+3-4,
etc., f(n) = f(n — 4k) 4 4k, k a positive integer. In particular,
£(2012) = £(0) + 2012, £(2013) = £(1) + 2012,
£(2014) = £(2) + 2012, £(2015) = £(3) + 2012.

In the originals terms
a2012 + a2013 + @2014 + G2015 = ao + a1 + a2z + a3 +4-2012.

ag +n,n = 4k,

a,+n—1,n=4k+1,
as+n—2,n =4k + 2,
as +n —3,n— 4k + 3.

In general, a,, =

n
This could be expressed with a single formula: a,, = a,, mod 4 + 4’2‘

(]

46. TANGENTIAL CHAOS

Solve in real numbers:
yr?t + 423 + y = 622y + 42
zy* + 4y® + z = 6y%z + 4y
xz? + 423 + x = 622 + 42

Proposed by Daniel Sitaru - Romania

Solution by Daniel Sitaru - Romania.
3
Let x = tana,a € (—%,%). Theny = :;fgiﬁ;”_’_l = tan4a.
Thus, z = tan16a and x = tan64a, implying tan a = tan 64a from which

a= ’é—g, with k an integer. But, since a € (—%,7%),k=0,%£1,... +31.

It follows that

(z,y,2) € {(tan ’;—;,tan %,tan %) : ke {0,41,..., :i:31}}
(I
Note by Alexander Bogomolny
Let f(x) = wfffgi:fj_l . Then the solution to the system y = f(x),

z = f(y),x = f(z) could be seen as having iterations on f run into 3 -
cycle which, reminds (if only spuriously) of Sharkovsky’s theorem (http:
//www.tufts.edu/as/math/Preprints/BurnsHasselblattShort.pdf) (see also Pe-
riod Three Implies Chaos) (http://faculty.washington.edu/joelzy/LiYorke_
period3.pdf) means that the iteration on function f have cycles of any
length and are, in principle, chaotic. Dan’s solution makes it obvious
that the substitutions * = tan a will solve n - cycles for any n = 2,3,4,...
Moreover, thekunion of all such solutions is the countable set of numbers
v

in the form 7", where |k| < 4" /2Iterations that start with any other


http://www.tufts.edu/as/math/Preprints/BurnsHasselblattShort.pdf
http://www.tufts.edu/as/math/Preprints/BurnsHasselblattShort.pdf
http://faculty.washington.edu/joelzy/LiYorke_period3.pdf
http://faculty.washington.edu/joelzy/LiYorke_period3.pdf
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point will be chaotic.

Quite obviously the same can be said of a simpler function f(x) = %,

that, for example, could be converted to a system of three much simpler
equations:

y — 2z = x%y

z — 2y = y?z

T — 2z = 2%z

47. DAN SITARU’S CYCLCIC INEQUALITY IN ONE VARIABLE

Prove that, for x € R,

(\/ac2—ac—i-l—\/scz—l-m—i-l)z—l-(\/mz—ac—l-l—\/4332+3>2+

2
—|—(\/w2—{—az—|—1—\/4zc2+3) < 622 + 2.

Proposed by Daniel Sitaru - Romania

Solution 1 (by Soumava Chakraborty - Kolkata - India).

For typographic convenience, let’s denotea =22 —xz+1,b=2% —x + 1,
and ¢ = 422 4+ 3. Then, upon squaring the required inequality takes an
equivalent form:

622 + 8 = 1222 + 10 — (622 + 2) < 2(Vab + Vbc + v/ca),
or, 3x24+4< \/ab-l—\/E—l— Vea.

Squaring once more give
3x2 + 4)2 — (ab+ bc+ ca) < 2(avVbe + by/ca + cVab),

which reduces to

*) 9(332 +1) < 2(aVbc 4 by/ca + cvab).
Now,

1\2 3 3

2 — _ _ _

a==zx w—i-l—(:v 2) —1-424,

1\2 3 3

— 2 — _ _ _

b=a’t+oti=(a+ ) +5>7,

c=4x%>+3 > 3.
The right - hand side ofE] is then estimated as

3 .3 3y ) 3 _
RHS[A >2(a§+b§+cz>—3(2m +2)+5(4m +3) =

21
=122% + 5 > 9(x2+1)=LHS[A
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Solution 2 (by Daniel Sitaru - Romania,).

Let’s denote = /2?2 — x4+ 1,c = V2?2 —x + 1, and a = /422 + 3. Note
that a, b, c are the sides of a triangle: a+b > c¢,b+c¢c > a,c+a > b.

For example, square b+ ¢ > a to obtain

2(x® +1) +2¢/(z* +1)2 — 2% > 42® + 3, or 2/ (z? + 1)? — 2% > 222 + 1;

squaring the second time:
4x? 4+ 422 + 4 > 422 + 422 + 1, which is true.
In ABC,

b2 + 2 — a2 —2x2 —1
cos A = =
2bc 2Vt + 224+ 1

) —222 —1 2 3
sin A = 1—( ) N
2Vt 4+ 22 4+ 1 4(xt + 224+ 1)
Slb‘A1\/4+2+1 5
= —bcsinA = - -V« T ey =,
2 2 4(zt + 224+ 1) 4
By the Hadwiger - Finsler inequality,

Z(a—b)2+45\/§< Zaz

cycl cycl

=

such that

3
Z(a—b)2+4\/§-‘i—<x2—m+1+x2+m+1+4w2+3,

cycl
i.e., Z(a —b)? < 62 4 2.
cycl
This is exactly the required inequality. (]

Acknowledgment (by Alexander Bogomolny)
Daniel Sitaru has kindly posted a problem for the Romanian Mathemat-
ical Magazine, with a solution (Solution 1) by Soumava Chakraborty.
Solution 2 is by Daniel Sitaru.

48. DAN SITARU’S CYCLCIC INEQUALITY IN MANY
VARIABLES

Prove that, for a,b,c,d > 0,
a® +b° + c® + d*
abcd )

Solution (by Kunihiko Chikaya - Tokyo - Japan).
By the AM-GM inequality:

5 51 p5 4¢P +d°
a® + (a® + b% + ¢ + )Zmza-abcd,

a+b+c+d<

5
b + (a® + b° + ¢® + d°
+(a+5+0+ ) > Vo7 G = b- abed,

5 54 pb 5+ db
c+(a+5+c+ ) > VF B SE = ¢ - abed,
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PH@ VD) s YT o Ed = d-abed.

Adding up the four gives
5(a® + b° + ¢® + d°)

5
which is exactly the required inequality. ([l

> (a+ b+ c+ d)abed,

Generalization (by Alexander Bogomolny)

Prove that, for integer n > 0 and ax,k € 1,n,

n

($5o0) (fTow) < 3

k=1

Proof (by Alexander Bogomolny).
By the AM-GM inequality,

n ta'r_t—‘f-t + Zn an+t n n

f] k=1 % n t(n+t) ntt __
>( )2 Y et [aptt =
k=1 k=1

It remains only to note that

2": <ta;‘+t +3r artt ) = ty eyt S aptt
= n+t n+t

+t +t
_tyiaaiT i et ()Y, aptt 3 apt
n+t n+t k

kj=1
t

Acknowledgment (by Alexander Bogomolny)
Dan Sitaru has shared a problem from the Romania Mathematical Mag-
azine, with a beautiful solution by Kunihiko Chikaya. Both the problem
and the solution suggest a generalization.

49. DIMENSIONLESS INEQUALITY IN THE EUCLIDEAN PLANE

Given six points in the Euclidean plane: A, B,C,D,E,F. Prove that
2(AB? + BC? + CD? + DE?* + EF? + FA®) > AD? + BE* + CF?
Source: TST - Romania
Proof (by Ioan Serdean - Romania,).

Let the points have coordinates (zk,yx),k = 1,...,6. Setting (x7,y7) =
(1,y1), the required inequality becomes

2( 26: [(ﬂckﬂ — o) + (Yot1 — yk)z}) > zi: [($k+3 — )% + (Yrts — yk)ﬂ

k=1
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This will be proved if we manage to show that

2( i(mwﬂ — mk)z) > i($k+3 —xy)?,

k=1 k=1

2( i(yk+1 - yk)2) 2 i(’yk+3 —yk)’.
k=1 k=1

Obviously, suffice it to prove just one of these inequalities as the differ-
ence between the two is exclusively notational. Remarkably, this would
mean that the problem could have been posed in any Euclidean space
R™,n > 1, and not just the Euclidean plane.

Thus introduce ar = 41 — Tk, k = 1,...,6. The first inequality then

reduces to
6 3

2( Z ai) > Z(ak+2 + akt1 + ax)?.

k=1 k=1

Note that by the definition, 22=1 ar = 0. With this contraint, the above
inequality is equivalent to

2( 25: ai) + 2( 25: ak) > i(ak+2 + apt1 + ar)?.
k=1 k=1

k=1
The latter can be transformed into
5

5
(Z%) + (a1 + az + as)* + (a1 + a4)® + (az + a5)* > 0

k=1

which is of course true. O

Acknowledgment (by Alezander Bogomolny)

The problem from the Romanian Mathematical Magazine has been kindly
shared at the CutTheKnotMath facebook page by Daniel Sitaru, along
with the beautiful solution by Ioan Serdean.

50. A TRIGONOMETRIC INEQUALITY FROM THE RMM

T . . siny\3 . sinx\3
Prove that, for x,y € (0, 5) ,sin(z +y) < sm:c( > + smy( )
Y T

Proposed by Daniel Sitaru - Romania

Proof (by Soumava Chakrabory - Kolkata - India).
Due to the addition formula for sine, sin (z +y) = sinxz cosy + coszsiny,
to prove the required inequality suffice it to establish that, for

. \3
z E(O, g), cos z < (%) . This is the same as f(z) = sin? ztanz — 2% > 0.
Note that f(0) = 0. We shall differentiable repeatedly.
f'(2) = sin® zsec? z 4 tan z(2 sin z cos z) — 322

.2
:tanzz—i—ZSln z — 322,
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Introduce g(z) = f’(z) and note that g(0) = 0.
g'(z) = 2tanzsec? z + 4sinzcos z — 6z
Introduce h(z) = %g’(z) and note that ~(0) = 0.
h'(z) = (sec? z)? + (tan z) (2 sec z)(sec z tan z) + 2(cos? z — sin® z) — 3
= (1 4 tan? 2)? 4 2tan® 2(1 + tan® 2) 4+ 2(2cos*z — 1) — 3
4 3t 7P

=14+t +2t1+t)+——-5=—— ",
(+)+(+)+1+t Tt

t = tanz > 0 and so h/(z) > 0. Hence, h(z) > h(0) = 0, so that g’(z) > 0,
and g(z) > g(0) = 0, meaning f/(z) > 0 and f(z) > f(0) =0.
This completes the proof. ([l

Acknowledgment (by Alexander Bogomolny)
Dan Sitaru has kindly posted the above problem form the Romanian
Mathematical Magazine at the CutTheKnotMath facebook page.

Its nice to be important but more
important its to be nice.

At this paper works a TEAM.

This is RMM TEAM.

To be continued!

Daniel Sitaru
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