TRIGONOMETRIC SUBSTITUTIONS

DANIEL SITARU

ABSTRACT. In the following we will use trigonometric substitutions for solving some equations and for the calculus of the general term of some series.

1. Solve the following equation:

$$x^3 - 3x + a(1 - 3x^2) = 0; a \in \mathbb{R}$$

Proof.

$$x \in \mathbb{R} \Rightarrow \exists b \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right); x = \tan b$$
$$a(1 - 3\tan^2 b) = 3\tan b - \tan^3 b \Rightarrow a = \frac{3\tan b - \tan^3 b}{1 - 3\tan^2 b}$$
$$a = \tan 3b \Rightarrow 3b = \arctan a + k\pi; k \in \mathbb{Z} \Rightarrow b = \frac{1}{3}\arctan a + \frac{k\pi}{3}; k \in \mathbb{Z}$$
$$x = \tan b = \tan\left(\frac{1}{3}\arctan a + \frac{k\pi}{3}\right); k \in \{-2, 0, 2\}$$
$$= 1 \text{ the equation: } x^3 - 3x^2 - 3x + 1 = 0 \text{ has the solutions:}$$

If a = 1 the equation: $x^3 - 3x^2 - 3x + 1 = 0$ has the solutions:

$$x = \tan\left(\frac{\pi}{12} + \frac{k\pi}{3}\right); k \in \{-2, 0, 2\}, x_1 = \tan\frac{\pi}{12}; x_2 = \tan\frac{\pi}{4}; x_3 = \tan\left(-\frac{7\pi}{4}\right)$$

If a = 2 the equation: $x^3 - 6x^2 - 3x + 2 = 0$ has the solutions:

$$x = \tan\left(\frac{1}{3}\arctan 2 + \frac{k\pi}{3}\right)$$

$$k \in \{-2, 0, 2\}, x_1 = \tan\left(\frac{1}{3}\arctan 2\right); x_2 = \tan\left(\frac{1}{3}\arctan 2 + \frac{2\pi}{3}\right); x_3 = \tan\left(\frac{1}{3}\arctan 2 - \frac{2\pi}{3}\right)$$

2. Solve the following equation:

$$4x^3 - 4x + a(x^4 - 6x^2 + 1) = 0; a \in \mathbb{R}$$

Proof.

$$x \in \mathbb{R} \Rightarrow \exists b \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right); x = \tan b; a(\tan^4 b - 6\tan^2 b + 1) = 4\tan b - 4\tan^3 b$$
$$a = \frac{4\tan b - 4\tan^3 b}{\tan^4 b - 6\tan^2 + 1} \Rightarrow a = \tan 4b \Rightarrow b = \frac{1}{4}\arctan a; x = \tan\left(\frac{1}{4}\arctan a + \frac{k\pi}{4}\right); k \in \mathbb{Z}$$
If $a = 1$ the equation $x^4 + 4x^3 - 6x^2 - 4x + 1 = 0$ has the solutions:
$$x_1 = \tan\frac{\pi}{16}; x_2 = \tan\frac{5\pi}{16}; x_3 = \tan\left(-\frac{3\pi}{16}\right); x_4 = \tan\frac{9\pi}{16}$$

$$x_1 = \tan \frac{\pi}{16}; x_2 = \tan \frac{5\pi}{16}; x_3 = \tan \left(-\frac{3\pi}{16}\right); x_4 = \tan \frac{9\pi}{16}$$

DANIEL SITARU

3. Find the formula of the general term of the series given by the relationships:

$$x_1 = a; a \in [-1, 1], x_{n+1} = 2x_n^2 - 1; n \ge 1$$

Proof.

$$x_1 = a \in [-1, 1] \Rightarrow (\exists)b \in [0, 2\pi]; a = \cos b; b = \arccos a$$

$$x_2 = 2x_1^2 - 1 = 2\cos^2 b - 1 = \cos(2b); x_3 = 2x_2^2 - 1 = 2\cos^2(2b) - 1 = \cos(2^2b)$$

$$x_4 = 2x_3^2 - 1 = 2\cos^2(2^2b) - 1 = \cos(2^3b).$$

Through induction we can prove that:

$$x_n = \cos(2^{n-1}b) = \cos(2^{n-1}\arccos a)$$

4. Find the formula of the general term of the series given by the relationships:

$$x_1 = a; a \in [-1, 1]; x_{n+1} = 1 - 2x_n^2; n \ge 1$$
$$x_2 = 1 - 2x_1^2 = 1 - 2\cos^2 b = \cos(2b); x_3 = 1 - 2x_2^2 = 1 - 2\cos^2(2b) = \cos(2^2b)$$
$$x_4 = 1 - 2x_3^2 = 1 - 2\cos^2(2^2b) = \cos(2^3b)$$

Through induction we can prove that:

$$x_n = \cos(2^{n-1}b) = \cos(2^{n-1}\arcsin a)$$

5. Find the formula of the general term of the series given by the relationships:

$$x_1 = a; a \in [-1, 1]; x_{n+1} = x_n(3 - 4x_n^2); n \ge 1$$

Proof.

$$\begin{aligned} x_1 &= a \in [-1,1] \Rightarrow (\exists)b \in [0,2\pi]; a = \sin b; b = \arcsin a\\ x_2 &= x_1(3-4x_1^2) = \sin b(3-4\sin^2 b) = \sin(3b)\\ x_3 &= x_2(3-4x_2^2) = \sin 3b(3-4\sin^2 3b) = \sin(3^2b)\\ x_4 &= x_3(3-4x_3^2) = \sin(3^2b) \left(2-4\sin^4(3^2b)\right) = \sin(3^3b) \end{aligned}$$

Through induction we can prove that:

$$x_n = \cos(3^{n-1}b) = \cos(3^{n-1}\arccos a)$$

6. Find the formula of the general term of the series given by the relationships:

$$x_1 = a; a \in [-1, 1]; x_{n+1} = x_n(4x_n^2 - 3); n \ge 1$$

Proof.

$$x_1 = a; a \in [-1, 1] \Rightarrow (\exists)b \in [0, 2\pi]; a = \cos b; b = \arccos a$$

$$x_2 = x_1(4x_1^2 - 3) = \cos b(4\cos^2 b - 3) = \cos(3b)$$

$$x_3 = x_2(4x_2^2 - 3) = \cos 3b(4\cos^2 3b - 3) = \cos(3^2b)$$

Through induction we can prove that:

 $x_n = \cos(3^{n-1}b) = \cos(3^{n-1}\arccos a)$

 $\mathbf{2}$

7. Find the formula of the general term of the series given by the relationships:

$$x_1 = a; a \in \mathbb{R}; x_{n+1} = \frac{2x_n}{1 - x_n^2}; n \ge 1$$

Proof.

$$x_1 = a \in [-1, 1] \Rightarrow (\exists)b \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right); a = \tan b; b = \arctan a$$
$$x_2 = \frac{2x_1}{1 - x_1^2} = \frac{2\tan b}{1 - \tan^2 b} = \tan(2b); x_3 = \frac{2x_2}{1 - x_2^2} = \frac{2\tan(2b)}{1 - \tan^2(2b)} = \tan(2^2b)$$

Through induction we can prove that:

$$x_n = \tan(2^{n-1}b) = \tan(2^{n-1}\arctan a)$$

8. Find the formula of the general term of the series given by the relationships:

$$x_1 = a; a \in \mathbb{R}; x_{n+1} = \frac{3x_n - x_n^3}{1 - 3x_n^2}; n \ge 1$$

Proof.

$$x_1 = a \in [-1, 1] \Rightarrow (\exists)b \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right); a = \tan b; b = \arctan a$$
$$x_2 = \frac{3x_1 - x_1^3}{1 - 3x_1^2} = \frac{3\tan b - \tan^3 b}{1 - 3\tan^2 b} = \tan(3b); x_3 = \frac{3x_2 - x_2^3}{1 - 3x_2^2} = \frac{3\tan(3b) - \tan^3(3b)}{1 - 3\tan^2(3b)} = \tan(3^2b)$$

Through induction we prove that:

$$x_n = \tan(3^{n-1}b) = \tan(3^{n-1}\arctan a)$$

г	-	-	_

References

- [1] Gh. Siretchi, *Differential and integral calculus*. Scientific and Encyclopaedic Publishing House, Bucharest, 1985
- [2] Daniel Sitaru, Claudia Nănuți, Mathematics for Olympiads. Ecko Print Publishing House, Drobeta Turnu - Severin, 2014.

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com