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ABSTRACT 

Trigonometric inequalities in triangles may not be a new topic in the world of mathematics, but its 

problems have never been too old. Otherwise, they are created and challenged it day by day all 

around the world, and so are the inequalities proposed by teacher Alexandru Szoros. And it is truly 

my pleasure to represent in this article those problems, which I solved by using the triangle solution 

method. 

1. Introduction 

 

In triangle 𝐴𝐵𝐶 

sin
𝐴

2
≤

𝑎𝑏𝑐

(𝑝 − 𝑎)(𝑎 + 𝑏)(𝑎 + 𝑐)
 

(
𝑅

2
)
2

≥
𝑟𝑎𝑟𝑏 + 𝑟𝑏𝑟𝑐 + 𝑟𝑐𝑟𝑎

27
≥ 𝑟2 

4𝑅

𝑎
≥
𝑏

𝑙𝑐
+
𝑐

𝑙𝑏
≥
8𝑟

𝑎
 

Alexandru Szoros 

In this article, I focus on solving these problems by using acknowledgements of triangle solution. 

In lieu of representing theories and solutions separately, I would discuss on them in parallel 

sections. The three problems proposed by Alexandru Szoros are represented in Section 2, Section 

3, and Section 4, respectively. In Section 5, I represent more discussions of solving techniques and 

tricks. And Section 6 contains the conclusion of this article. 
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2. A. Szoros’ Inequality I 

 

Problem: Given triangle 𝐴𝐵𝐶, prove that 

sin
𝐴

2
≤

𝑎𝑏𝑐

(𝑝 − 𝑎)(𝑎 + 𝑏)(𝑎 + 𝑐)
     (𝐼) 

Solution: Note that, if we put 

𝑓(𝑎; 𝑏; 𝑐) = 𝐿𝐻𝑆(𝐼) 

𝑔(𝑎; 𝑏; 𝑐) = 𝑅𝐻𝑆(𝐼) 
Then 𝑑𝑒𝑔𝑓(𝑎; 𝑏; 𝑐) = 𝑑𝑒𝑔𝑔(𝑎; 𝑏; 𝑐) = 0. 

This notation reminds me to rewrite 𝑅𝐻𝑆(𝐼) under trigonometric form. And fortunately, 

the law of sine indicates that, in any triangle 𝐴𝐵𝐶: 

𝑎

sin 𝐴
=

𝑏

sin𝐵
=

𝑐

sin 𝐶
= 2𝑅 

And this law results in a consequence, if 

ℎ(𝑎; 𝑏; 𝑐) =
𝑃(𝑎; 𝑏; 𝑐)

𝑄(𝑎; 𝑏; 𝑐)
 

where 𝑑𝑒𝑔𝑃 = 𝑑𝑒𝑔𝑄 = 𝑛, then 

ℎ(𝑎; 𝑏; 𝑐) = ℎ(sin 𝐴 ; sin𝐵 ; sin 𝐶) 
Indeed 

ℎ(𝑎; 𝑏; 𝑐) =
(2𝑅)𝑛𝑃(sin𝐴 ; sin𝐵 ; sin 𝐶)

(2𝑅)𝑛𝑄(sin𝐴 ; sin𝐵 ; sin 𝐶)
= ℎ(sin𝐴 ; sin𝐵 ; sin 𝐶) 

Hence, we are able to rewrite 𝑅𝐻𝑆(𝐼): 
𝑎𝑏𝑐

(𝑝 − 𝑎)(𝑎 + 𝑏)(𝑎 + 𝑐)
=

2𝑎𝑏𝑐

(𝑏 + 𝑐 − 𝑎)(𝑎 + 𝑏)(𝑎 + 𝑐)
 

=
2 sin 𝐴 sin𝐵 sin 𝐶

(sin𝐵 + sin 𝐶 − sin𝐴)(sin𝐴 + sin𝐵)(sin 𝐴 + sin 𝐶)
 

= (
4 sin

𝐴
2 cos

𝐴
2

2 sin
𝐵 + 𝐶
2

cos
𝐵 − 𝐶
2

− 2 sin
𝐴
2
cos

𝐴
2

)(
2 sin

𝐶
2 cos

𝐶
2

2 sin
𝐴 + 𝐵
2

cos
𝐴 − 𝐵
2

)(
2 sin

𝐵
2 cos

𝐵
2

2 sin
𝐴 + 𝐶
2

cos
𝐴 − 𝐶
2

) 

= (
2 sin

𝐴
2 cos

𝐴
2

cos
𝐴
2 cos

𝐵 − 𝐶
2 − cos

𝐵 + 𝐶
2 cos

𝐴
2

)(
sin

𝐶
2 cos

𝐶
2

cos
𝐶
2 cos

𝐴 − 𝐵
2

)(
sin

𝐵
2 cos

𝐵
2

cos
𝐵
2 cos

𝐴 − 𝐶
2

) 

=
2 sin

𝐴
2
sin

𝐵
2
sin

𝐶
2

cos
𝐴 − 𝐵
2 cos

𝐴 − 𝐶
2 (cos

𝐵 − 𝐶
2 − cos

𝐵 + 𝐶
2 )

 

=
2 sin

𝐴
2 sin

𝐵
2 sin

𝐶
2

2 sin
𝐵
2 sin

𝐶
2 cos

𝐴 − 𝐵
2 cos

𝐴 − 𝐶
2

 

=
sin

𝐴
2

cos
𝐴 − 𝐵
2 cos

𝐴 − 𝐶
2
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And obviously, since 

cos
𝐴 − 𝐵

2
cos

𝐴 − 𝐶

2
≤ 1 

We get 

𝑅𝐻𝑆(𝐼) ≥ sin
𝐴

2
≥ 𝐿𝐻𝑆(𝐼) 

QED. Equality holds when  cos
𝐴−𝐵

2
cos

𝐴−𝐶

2
= 1, in other words, 𝐴 = 𝐵 = 𝐶 =

𝜋

3
. ■ 

 

3. A. Szoros’ Inequality II 

 

Problem: Given triangle 𝐴𝐵𝐶, prove that 

(
𝑅

2
)
2

≥
𝑟𝑎𝑟𝑏 + 𝑟𝑏𝑟𝑐 + 𝑟𝑐𝑟𝑎

27
≥ 𝑟2     (𝐼𝐼) 

3.1.About inradius and exradii of a triangle 

In this subsection, I revise the calculation of inradius and exradii of a triangle. 

 

Figure 1. Excircle (IA; ra) of triangle ABC 
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From Figure 1, we get 

𝑆 = 𝑆𝐴𝐵𝐼𝐴 + 𝑆𝐴𝐶𝐼𝐴 − 𝑆𝐵𝐶𝐼𝐴 

=
1

2
𝐴𝐵. 𝐼𝐴𝑍 +

1

2
𝐴𝐶. 𝐼𝐴𝑌 −

1

2
𝐵𝐶. 𝐼𝐴𝑋 

=
1

2
(𝑏 + 𝑐 − 𝑎)𝑟𝑎 

= (𝑝 − 𝑎)𝑟𝑎 

And therefore 

𝑟𝑎 =
𝑆

𝑝 − 𝑎
=

2𝑆

𝑏 + 𝑐 − 𝑎
 

Totally similarly 

𝑟𝑏 =
𝑆

𝑝 − 𝑏
=

2𝑆

𝑐 + 𝑎 − 𝑏
;   𝑟𝑐 =

𝑆

𝑝 − 𝑐
=

2𝑆

𝑎 + 𝑏 − 𝑐
 

And additionally 

𝑟 =
𝑆

𝑝
=

2𝑆

𝑎 + 𝑏 + 𝑐
 

3.2.Solution for A. Szoros’ Inequality II 

Rewrite (𝐼𝐼): 

(
𝑅

2
)
2

≥
4𝑆2

27
∑

1

(𝑏 + 𝑐 − 𝑎)(𝑐 + 𝑎 − 𝑏)
≥

4𝑆2

(𝑎 + 𝑏 + 𝑐)2
 

⟺  (
𝑅

2
)
2

≥
4𝑆2(𝑎 + 𝑏 + 𝑏)

27(𝑏 + 𝑐 − 𝑎)(𝑐 + 𝑎 − 𝑏)(𝑎 + 𝑏 − 𝑐)
≥

4𝑆2

(𝑎 + 𝑏 + 𝑐)2
 

 

Firstly, I show the back part of this double-inequality, which could be rewritten as 

(𝑎 + 𝑏 + 𝑐)3 ≥ 27(𝑏 + 𝑐 − 𝑎)(𝑐 + 𝑎 − 𝑏)(𝑎 + 𝑏 − 𝑐) 
Since 𝑎, 𝑏, and 𝑐 are three sides of a triangle, there exist three positive numbers 𝑥, 𝑦, 

and 𝑧 such that 

𝑎 = 𝑥 + 𝑦;    𝑏 = 𝑦 + 𝑧;    𝑐 = 𝑧 + 𝑥 

Hence, the above inequality should be transformed to 

8(𝑥 + 𝑦 + 𝑧)3 ≥ 216𝑥𝑦𝑧 

⟺ (𝑥 + 𝑦 + 𝑧)3 ≥ 27𝑥𝑦𝑧 

⟺ 𝑥 + 𝑦 + 𝑥 ≥ 3√𝑥𝑦𝑧
3

 

This is true due to the AM-GM inequality of three non-negative numbers. 

Return to the front part, where we need to prove 

(
𝑅

2
)
2

≥
𝑝𝑆2

27(𝑝 − 𝑎)(𝑝 − 𝑏)(𝑝 − 𝑐)
=
𝑝2

27
 

⟺ 
𝑅

2
≥

𝑝

3√3
=
𝑎 + 𝑏 + 𝑐

6√3
=
𝑅(sin𝐴 + sin 𝐵 + sin 𝐶)

3√3
 

⟺ sin𝐴 + sin 𝐵 + sin 𝐶 ≤
3√3

2
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This is also true in any triangle 𝐴𝐵𝐶 thanks to the proof of using Jensen’s inequality to 

concave functions. However, here I represent an amazing way to prove this, which was 

recommended by teacher Tran Phuong. Recall 

𝑇 = sin𝐴 + sin 𝐵 + sin 𝐶 

= sin 𝐴 + sin𝐵 + sin(𝐴 + 𝐵) 

= sin 𝐴 + sin𝐵 + sin𝐴 cos 𝐵 + sin𝐵 cos 𝐴 

=
2

√3
(
√3

2
sin𝐴 +

√3

2
sin 𝐵) +

1

√3
(√3 cos 𝐴 sin𝐵 + √3 cos 𝐵 sin𝐴) 

 

Using AM-GM inequality from the geometric mean side, we get 

𝑇 ≤
1

√3
[
3

4
+ (sin𝐴)2 +

3

4
+ (sin𝐵)2]

+
1

2√3
[3(cos𝐴)2 + (sin𝐵)2 + 3(cos𝐵)2 + (sin 𝐴)2] =

3√3

2
 

Both parts of inequality (𝐼𝐼) are proven, QED. Equalities hold when 𝑎 = 𝑏 = 𝑐. ■ 

In Section 5, I would demonstrate more about Tran Phuong’s recommendation. 

 

4. A. Szoros’ Inequality III 

 

Problem: Given triangle 𝐴𝐵𝐶, prove that 

4𝑅

𝑎
≥
𝑏

𝑙𝑐
+
𝑐

𝑙𝑏
≥
8𝑟

𝑎
     (𝐼𝐼𝐼) 

4.1.About angle bisectors of a triangle 

 

Figure 2. Angle bisector AD and incenter I of triangle ABC 
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Lemma I. (where 𝑙𝑎 is the length of 𝐴𝐷) 

𝑙𝑎 =
2𝑏𝑐 cos

𝐴
2

𝑏 + 𝑐
 

Proof. According to the angle bisector’s property 

𝐵𝐷

𝐴𝐵
=
𝐶𝐷

𝐴𝐶
=
𝐵𝐷 + 𝐶𝐷

𝐴𝐵 + 𝐴𝐶
=

𝐵𝐶

𝐴𝐵 + 𝐴𝐶
=

𝑎

𝑏 + 𝑐
 

⟹ 𝐵𝐷 =
𝑎𝑐

𝑏 + 𝑐
;    𝐶𝐷 =

𝑎𝑏

𝑏 + 𝑐
 

Using the law of cosine in triangles 𝐴𝐵𝐷 and 𝐴𝐶𝐷: 

{𝐵𝐷
2 = 𝐴𝐵2 + 𝐴𝐷2 − 2𝐴𝐵. 𝐴𝐷 cos𝐵𝐴𝐷̂

𝐶𝐷2 = 𝐴𝐶2 + 𝐴𝐷2 − 2𝐴𝐶. 𝐴𝐷 cos 𝐶𝐴𝐷̂
 

⟺ 

{
 

 (
𝑎𝑐

𝑏 + 𝑐
)
2

= 𝑐2 + 𝑙𝑎
2 − 2𝑐𝑙𝑎 cos

𝐴

2

(
𝑎𝑏

𝑏 + 𝑐
)
2

= 𝑏 + 𝑙𝑎
2 − 2𝑏𝑙𝑎 cos

𝐴

2

 

⟹ 
𝑎2(𝑐2 − 𝑏2)

(𝑏 + 𝑐)2
= 𝑐2 − 𝑏2 − 2(𝑐 − 𝑏)𝑙𝑎 cos

𝐴

2
 

⟹ 
𝑎2

𝑏 + 𝑐
= 𝑏 + 𝑐 − 2𝑙𝑎 cos

𝐴

2
 

(we might assume that 𝑏 ≠ 𝑐) 

⟹  2𝑙𝑎 cos
𝐴

2
= 𝑏 + 𝑐 −

𝑎2

𝑏 + 𝑐
=
𝑏2 + 𝑐2 − 𝑎2 + 2𝑏𝑐

𝑏 + 𝑐
=
2𝑏𝑐 cos𝐴 + 2𝑏𝑐

𝑏 + 𝑐

=
2𝑏𝑐(1 + cos𝐴)

𝑏 + 𝑐
=
4𝑏𝑐 (cos

𝐴
2)

2

𝑏 + 𝑐
 

⟹ 𝑙𝑎 =
2𝑏𝑐 cos

𝐴
2

𝑏 + 𝑐
 

If 𝑏 = 𝑐, triangle 𝐴𝐵𝐶 becomes isosceles at vertex 𝐴, where 𝑙𝑎 = ℎ𝑎 , and the Lemma is 

clearly true since 

2𝑏𝑐 cos
𝐴
2

𝑏 + 𝑐
=
2𝑏2 cos

𝐴
2

2𝑏
= 𝑏 cos

𝐴

2
= ℎ𝑎 

QED. ● 

 

Lemma II. (where 𝑙𝑎 is the length of 𝐴𝐷) 

𝑙𝑎 =
2

𝑏 + 𝑐
√𝑏𝑐𝑝(𝑝 − 𝑎) 

Proof. In Figure 2, I solve for 𝐴𝐷 in triangle 𝐴𝐵𝐷, of which 𝐴𝐵, 𝐵𝐷, and cos 𝐵 are given. 

𝐴𝐷2 = 𝐴𝐵2 + 𝐵𝐷2 − 2𝐴𝐵. 𝐵𝐷 cos 𝐴𝐵𝐷̂ 

⟹ 𝑙𝑎
2 = 𝑐2 + (

𝑎𝑐

𝑏 + 𝑐
)
2

− 2𝑐 (
𝑎𝑐

𝑏 + 𝑐
) (
𝑐2 + 𝑎2 − 𝑏2

2𝑐𝑎
) 
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𝑙𝑎
2 = 𝑐2 + (

𝑎𝑐

𝑏 + 𝑐
)
2

−
𝑐(𝑐2 + 𝑎2 − 𝑏2)

𝑏 + 𝑐
 

=
1

(𝑏 + 𝑐)2
[𝑎2𝑐2 + 𝑐2(𝑏 + 𝑐)2 − 𝑐(𝑏 + 𝑐)(𝑐2 + 𝑎2 − 𝑏2)] 

=
1

(𝑏 + 𝑐)2
[𝑎2𝑐2 + 𝑐(𝑏 + 𝑐)(𝑏𝑐 + 𝑐2 − 𝑐2 − 𝑎2 + 𝑏2)] 

=
1

(𝑏 + 𝑐)2
[𝑎2𝑐2 + (𝑏𝑐 + 𝑐2)(𝑏𝑐 − 𝑎2 + 𝑏2)] 

=
1

(𝑏 + 𝑐)2
(𝑎2𝑐2 + 𝑏2𝑐2 − 𝑎2𝑏𝑐 + 𝑏3𝑐 + 𝑏𝑐3 − 𝑎2𝑐2 + 𝑏2𝑐2) 

=
1

(𝑏 + 𝑐)2
(𝑏3𝑐 + 2𝑏2𝑐2 + 𝑏𝑐3 − 𝑎2𝑏𝑐) 

=
𝑏𝑐(𝑏2 + 2𝑏𝑐 + 𝑐2 − 𝑎2)

(𝑏 + 𝑐)2
 

=
𝑏𝑐[(𝑏 + 𝑐)2 − 𝑎2]

(𝑏 + 𝑐)2
 

=
𝑏𝑐(𝑏 + 𝑐 + 𝑎)(𝑏 + 𝑐 − 𝑎)

(𝑏 + 𝑐)2
 

=
4𝑏𝑐𝑝(𝑝 − 𝑎)

(𝑏 + 𝑐)2
 

⟹ 𝑙𝑎 =
2

𝑏 + 𝑐
√𝑏𝑐𝑝(𝑝 − 𝑎) 

QED. ● 

 

From the above lemmas, we could obtain 

cos
𝐴

2
= √

𝑝(𝑝 − 𝑎)

𝑏𝑐
 

And in Figure 2, using the law of sine in triangle 𝐴𝐵𝐷, we get 

𝐵𝐷

sin
𝐴
2

=
𝐴𝐷

sin𝐵
 

And therefore 

sin
𝐴

2
=
𝐵𝐷 sin𝐵

𝐴𝐷
=

(
𝑎𝑐
𝑏 + 𝑐

)
𝑏
2𝑅

2
𝑏 + 𝑐

√𝑏𝑐𝑝(𝑝 − 𝑎)
=

𝑎𝑏𝑐

4𝑅√𝑏𝑐𝑝(𝑝 − 𝑎)
=

𝑆

√𝑏𝑐𝑝(𝑝 − 𝑎)

= √
(𝑝 − 𝑏)(𝑝 − 𝑐)

𝑏𝑐
 

 

These formulas allow us to find trigonometric functions of 
𝐴

2
 with three sides given. 

Furthermore, I would represent one direct way to find any triangle’s incenter in plane 𝑂𝑥𝑦. 
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Property: Given triangle 𝐴𝐵𝐶 with incenter I, then 

𝑎𝐼𝐴⃗⃗⃗⃗ + 𝑏𝐼𝐵⃗⃗⃗⃗ + 𝑐𝐼𝐶⃗⃗⃗⃗ = 0⃗  
 

Proof: In Figure 2, 𝐵𝐼 is the angle bisector of 𝐴𝐵𝐶̂. Consider triangle 𝐴𝐵𝐷: 

𝐼𝐷

𝐵𝐷
=
𝐼𝐴

𝐴𝐵
⟹ 𝐼𝐴 =

𝐴𝐵

𝐵𝐷
𝐼𝐷 =

𝑐
𝑎𝑐
𝑏 + 𝑐

𝐼𝐷 =
𝑏 + 𝑐

𝑎
𝐼𝐷 

⟹  𝑎𝐼𝐴⃗⃗⃗⃗ = −(𝑏 + 𝑐)𝐼𝐷⃗⃗⃗⃗  
And note that 

𝐷𝐵

𝑐
=
𝐷𝐶

𝑏
⟹ 𝑏𝐷𝐵⃗⃗⃗⃗⃗⃗ = −𝑐𝐷𝐶⃗⃗⃗⃗  ⃗ 

Hence 

𝑎𝐼𝐴⃗⃗⃗⃗ + 𝑏𝐼𝐵⃗⃗⃗⃗ + 𝑐𝐼𝐶⃗⃗⃗⃗  

= −(𝑏 + 𝑐)𝐼𝐷⃗⃗⃗⃗ + 𝑏𝐼𝐵⃗⃗⃗⃗ + 𝑐𝐼𝐶⃗⃗⃗⃗  

= 𝑏(𝐼𝐵⃗⃗⃗⃗ − 𝐼𝐷⃗⃗⃗⃗ ) + 𝑐(𝐼𝐶⃗⃗⃗⃗ − 𝐼𝐷⃗⃗⃗⃗ ) 

= 𝑏𝐷𝐵⃗⃗⃗⃗⃗⃗ + 𝑐𝐷𝐶⃗⃗⃗⃗  ⃗ 

= 0⃗  
QED. ● 

 

4.2.Solution for A. Szoros’ Inequality III 

Rewrite (𝐼𝐼𝐼): 
4𝑅

𝑎
≥

𝑏

2𝑎𝑏 cos
𝐶
2

𝑎 + 𝑏

+
𝑐

2𝑎𝑐 cos
𝐵
2

𝑎 + 𝑐

≥
8𝑟

𝑎
 

⟺ 4𝑅 ≥
𝑎 + 𝑏

2 cos
𝐶
2

+
𝑎 + 𝑐

2 cos
𝐵
2

≥ 8𝑟 

⟺  4𝑅 ≥
2𝑅(sin𝐴 + sin𝐵)

2 cos
𝐶
2

+
2𝑅(sin𝐴 + sin 𝐶)

2 cos
𝐵
2

≥ 8𝑟 

⟺ 4 ≥
2 sin

𝐴 + 𝐵
2 cos

𝐴 − 𝐵
2

sin
𝐴 + 𝐵
2

+
2 sin

𝐴 + 𝐶
2 cos

𝐴 − 𝐶
2

sin
𝐴 + 𝐶
2

≥
8𝑟

𝑅
 

⟺ 2 ≥ cos
𝐴 − 𝐵

2
+ cos

𝐴 − 𝐶

2
≥
4𝑟

𝑅
 

 

The front part is obviously true since cos 𝜃 ≤ 1, ∀𝜃 ∈ ℝ, so equality holds only when 

𝐴 = 𝐵 = 𝐶 =
𝜋

3
. 

 

However, to prove the back part of this double-inequality, I am supposed to return to 

initial steps, with help from Lemma II. Rewrite the back part of (𝐼𝐼𝐼): 
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𝑏(𝑎 + 𝑏)

2√𝑎𝑏𝑝(𝑝 − 𝑐)
+

𝑐(𝑎 + 𝑐)

2√𝑎𝑐𝑝(𝑝 − 𝑏)
≥
8𝑆

𝑝𝑎
 

⟺ 
(𝑎 + 𝑏)√𝑎𝑏

2√𝑝 − 𝑐
+ 
(𝑎 + 𝑐)√𝑎𝑐

2√𝑝 − 𝑏
≥ 8√(𝑝 − 𝑎)(𝑝 − 𝑏)(𝑝 − 𝑐)     (∗) 

Using AM-GM inequality, of which 

𝑎 + 𝑏 ≥ 2√𝑎𝑏;    𝑎 + 𝑐 ≥ 2√𝑎𝑐 

𝐿𝐻𝑆(∗) ≥
𝑎𝑏

√𝑝 − 𝑐
+

𝑎𝑐

√𝑝 − 𝑏
≥

2𝑎√𝑏𝑐

√(𝑝 − 𝑏)(𝑝 − 𝑐)
4

 

So it is enough to show that 

𝑎√𝑏𝑐 ≥ 4√(𝑝 − 𝑎)(𝑝 − 𝑏)(𝑝 − 𝑐)√(𝑝 − 𝑏)(𝑝 − 𝑐)
4

 

⟺ 𝑎2𝑏𝑐 ≥ 16(𝑝 − 𝑎)(𝑝 − 𝑏)(𝑝 − 𝑐)√(𝑝 − 𝑏)(𝑝 − 𝑐)     (∗∗) 

 

Indeed, from geometric mean side to arithmetic mean side: 

2√(𝑝 − 𝑏)(𝑝 − 𝑐) ≤ 𝑝 − 𝑏 + 𝑝 − 𝑐 = 𝑎 

2√(𝑝 − 𝑏)(𝑝 − 𝑐) ≤ 𝑎 

2√(𝑝 − 𝑐)(𝑝 − 𝑎) ≤ 𝑏 

2√(𝑝 − 𝑎)(𝑝 − 𝑏) ≤ 𝑐 

⟹ 𝑅𝐻𝑆(∗∗) ≤ 𝐿𝐻𝑆(∗∗) 
Equality holds when 𝑎 = 𝑏 = 𝑐. QED. ■ 

 

5. More discussions 

5.1.The relation between circumscribed radius and inradius of a triangle 

 

From A. Szoros’ Inequalities II and III, we obtain 𝑅 ≥ 2𝑟. This is also consequently 

resulted in from many triangle-trigonometric problems, and I would represent one 

direct way of proving this: 

𝑅 ≥ 2𝑟 ⟺
𝑎𝑏𝑐

4𝑆
≥
2𝑆

𝑝
⟺ 𝑎𝑏𝑐 ≥

8𝑆2

𝑝
= 8(𝑝 − 𝑎)(𝑝 − 𝑏)(𝑝 − 𝑐) 

This is due to a result in last subsection, where 

2√(𝑝 − 𝑏)(𝑝 − 𝑐) ≤ 𝑎 

2√(𝑝 − 𝑐)(𝑝 − 𝑎) ≤ 𝑏 

2√(𝑝 − 𝑎)(𝑝 − 𝑏) ≤ 𝑐 

 

And the back part of (𝐼𝐼𝐼) leads to a nice problem: 

cos
𝐴 − 𝐵

2
+ cos

𝐴 − 𝐶

2
≥
4𝑟

𝑅
 

Or generally 
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cos
𝐴 − 𝐵

2
+ cos

𝐵 − 𝐶

2
+ cos

𝐶 − 𝐴

2
≥
6𝑟

𝑅
 

5.2.Proving basic triangle-trigonometric inequalities 

 

In triangle 𝐴𝐵𝐶 

𝑇 = sin𝐴 + sin𝐵 + sin 𝐶 ≤
3√3

2
     (𝑖𝑣) 

𝑈 = cos 𝐴 + cos𝐵 + cos 𝐶 ≤
3

2
     (𝑣) 

𝑉 = sin
𝐴

2
+ sin

𝐵

2
+ sin

𝐶

2
≤
3

2
     (𝑣𝑖) 

𝑊 = cos
𝐴

2
+ cos

𝐵

2
+ cos

𝐶

2
≤
3√3

2
     (𝑣𝑖𝑖) 

 

Except (𝑣), all (𝑖𝑣), (𝑣𝑖), and (𝑣𝑖𝑖) could be proven by using Jensen’s inequality to 

concave functions. But I would represent a method proposed by Tran Phuong to prove 

these inequalities, just like in subsection 4.2. Moreover, problem (𝑣) could be proven 

by using the SOS method, a highly convenient way. 

Indeed: 

𝑅𝐻𝑆(𝑣) − 𝐿𝐻𝑆(𝑣) = 1 − cos 𝐴 − (cos𝐵 + cos 𝐶) +
1

2
 

= 2 (sin
𝐴

2
)
2

− 2 cos
𝐵 + 𝐶

2
cos

𝐵 − 𝐶

2
+
1

2
(cos

𝐵 − 𝐶

2
)
2

+
1

2
(sin

𝐵 − 𝐶

2
)
2

 

= 2 (sin
𝐴

2
)
2

− 2 sin
𝐴

2
cos

𝐵 − 𝐶

2
+
1

2
(cos

𝐵 − 𝐶

2
)
2

+
1

2
(sin

𝐵 − 𝐶

2
)
2

 

=
1

2
(2 sin

𝐴

2
− cos

𝐵 − 𝐶

2
)
2

+
1

2
(sin

𝐵 − 𝐶

2
)
2

≥ 0 

QED. Equality holds when 𝐴 = 𝐵 = 𝐶 =
𝜋

3
. ● 

 

Tran Phuong’s recommendation: 

Proof of (𝑣), assuming 𝐶 = max
(0; 𝜋)

{𝐴; 𝐵; 𝐶}: 

𝑈 = cos 𝐴 + cos𝐵 + cos𝐶 = cos𝐴 + cos𝐵 − cos(𝐴 + 𝐵) 
= 1(cos𝐴 + cos𝐵) − cos 𝐴 cos 𝐵 + sin 𝐴 sin𝐵 

Using AM-GM inequality: 

𝑈 ≤
1

2
[1 + (cos 𝐴 + cos𝐵)2] − cos 𝐴 cos 𝐵 +

1

2
[(sin 𝐴)2 + (sin𝐵)2] =

3

2
 

Proof of (𝑣𝑖): 

𝑉 = sin
𝐴

2
+ sin

𝐵

2
+ sin

𝐶

2
= sin

𝐴

2
+ sin

𝐵

2
+ cos

𝐴 + 𝐵

2
 

= 1 (sin
𝐴

2
+ sin

𝐵

2
) + cos

𝐴

2
cos

𝐵

2
− sin

𝐴

2
sin

𝐵

2
 

Using AM-GM inequality: 
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𝑉 ≤
1

2
[1 + (sin

𝐴

2
+ sin

𝐵

2
)
2

] − sin
𝐴

2
sin

𝐵

2
+
1

2
[(cos

𝐴

2
)
2

+ (cos
𝐵

2
)
2

] =
3

2
 

Proof of (𝑣𝑖𝑖): 

𝑊 = cos
𝐴

2
+ cos

𝐵

2
+ cos

𝐶

2
= cos

𝐴

2
+ cos

𝐵

2
+ sin

𝐴 + 𝐵

2
 

= cos
𝐴

2
+ cos

𝐵

2
+ sin

𝐴

2
cos

𝐵

2
+ sin

𝐵

2
cos

𝐴

2
 

=
2

√3
(
√3

2
cos

𝐴

2
+
√3

2
cos

𝐵

2
) +

1

√3
(√3 sin

𝐴

2
cos

𝐵

2
+ √3 sin

𝐵

2
cos

𝐴

2
) 

Using AM-GM inequality: 

𝑊 ≤
1

√3
[
3

4
+ (cos

𝐴

2
)
2

+
3

4
+ (cos

𝐵

2
)
2

]

+
1

2√3
[3 (sin

𝐴

2
)
2

+ (cos
𝐴

2
)
2

+ 3(sin
𝐵

2
)
2

+ (cos
𝐵

2
)
2

] =
3√3

2
 

QED. To all of these problems, equalities hold when triangle 𝐴𝐵𝐶 is equilateral. ● 

 

5.3.About A. Szoros’ Inequality I 

sin
𝐴

2
= √

(𝑝 − 𝑏)(𝑝 − 𝑐)

𝑏𝑐
 

Using this formula, then (𝐼) becomes 

𝑎𝑏𝑐

(𝑝 − 𝑎)(𝑎 + 𝑏)(𝑎 + 𝑐)
≥ √

(𝑝 − 𝑏)(𝑝 − 𝑐)

𝑏𝑐
 

⟺ 𝑎𝑏𝑐√𝑏𝑐 ≥ (𝑝 − 𝑎)(𝑎 + 𝑏)(𝑎 + 𝑐)√(𝑝 − 𝑏)(𝑝 − 𝑐)     (𝑣𝑖𝑖𝑖) 

Like I mentioned above: 

2√(𝑝 − 𝑐)(𝑝 − 𝑎) ≤ 𝑏 

2√(𝑝 − 𝑎)(𝑝 − 𝑏) ≤ 𝑐 

⟹ 𝑏𝑐 ≥ 4(𝑝 − 𝑎)√(𝑝 − 𝑏)(𝑝 − 𝑐) 

So it would be enough were it possible to show that 

𝑎√𝑏𝑐 ≥
(𝑎 + 𝑏)(𝑎 + 𝑐)

4
 

However, this is totally not true, since 

𝑎 + 𝑏 ≥ 2√𝑎𝑏;    𝑎 + 𝑐 ≥ 2√𝑎𝑐 

Therefore, problem (𝑣𝑖𝑖𝑖) could be an unpleasant challenge in any contest. 

6. Conclusion 

Solving Alexandru Szoros’ Inequalities about triangle and trigonometric factors brought 

me three lessons. First, transform expressions from complicated to simple forms. Second, 

try to find common factors of both sides. And final, basic methods with classical 

inequalities should be approached initially, there must be a key to clinch the problems. 
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