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ABSTRACT

Trigonometric inequalities in triangles may not be a new topic in the world of mathematics, but its
problems have never been too old. Otherwise, they are created and challenged it day by day all
around the world, and so are the inequalities proposed by teacher Alexandru Szoros. And it is truly
my pleasure to represent in this article those problems, which I solved by using the triangle solution
method.

1. Introduction

In triangle ABC

A < abc
M= —a)@+b)ato

R\? rr +nrr+1r
()Zab b'c ca>r2

2 27 -
4R b ¢ 8r
a . l,  a

Alexandru Szoros

In this article, | focus on solving these problems by using acknowledgements of triangle solution.
In lieu of representing theories and solutions separately, 1 would discuss on them in parallel
sections. The three problems proposed by Alexandru Szoros are represented in Section 2, Section
3, and Section 4, respectively. In Section 5, | represent more discussions of solving techniques and
tricks. And Section 6 contains the conclusion of this article.



2. A. Szoros’ Inequality I

Problem: Given triangle ABC, prove that
A abc

—<
M7= (p —a)(a+b)(a+c)
Solution: Note that, if we put

(D

f(a;b;c) = LHS(I)

g(a; b;c) = RHS(I)
Then degf(a; b;c) = degg(a; b;c) = 0.
This notation reminds me to rewrite RHS(I) under trigonometric form. And fortunately,
the law of sine indicates that, in any triangle ABC:

a b c
sin A - sin B - sinC = 2R
And this law results in a consequence, if
P(a; b;c)
Masbie) = Q(a; b; c)

where degP = degQ = n, then

h(a; b;c) = h(sinA; sinB; sinC)
Indeed
(2R)"P(sinA; sinB; sinC)
(2R)"Q(sinA; sinB; sinC)

Hence, we are able to rewrite RHS(I):
abc 2abc
(p—a)la+b)a+c) (B+c—a)a+b)(a+c)
2sinAsinBsinC

- (sinB + sinC — sinA)(sinA + sin B)(sin A + sin C)

h(a; b;c) = = h(sin4; sinB; sin ()
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And obviously, since

We get
A
RHS(I) = SinE > LHS(I)

QED. Equality holds when cos%cosAz;c =1, inotherwords, A=B =C = g [

3. A. Szoros’ Inequality 11

Problem: Given triangle ABC, prove that

2 27 =r" (D

3.1.About inradius and exradii of a triangle
In this subsection, I revise the calculation of inradius and exradii of a triangle.

2
(5) - Ty + 1Ty + 1,15 > 2

Figure 1. Excircle (14; rq) of triangle ABC
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From Figure 1, we get

S = Sap1, + Saci, — Sbciy

1 1 1
= AB.I,Z + - AC.1,Y — = BC.1,X

2 2
1
=§®+c—aml
=@ -
And therefore
S 28
Ty = =
p—a b+c—a
Totally similarly
S 2§ S 2§
Ty = = ;T = =
p—b c+a-—>b p—c a+b-c
And additionally
S 25
" p a+b+c

3.2.8olution for A. Szoros’ Inequality 11
Rewrite (I1):

(R)2>4SZZ 1 - 452
2) — 27 (b+c—a)(c+a—-b)  (a+b+c)?
(R)2 4S%(a+ b+ b) 452
S |z 2 =
2 27(b+c—a)(c+a—b)(a+b—c)  (a+b+c)?

Firstly, I show the back part of this double-inequality, which could be rewritten as
(a+b+c)*=>27(b+c—a)(c+a—-b)(a+b—rc)
Since a, b, and c are three sides of a triangle, there exist three positive numbers x, y,
and z such that
a=x+y;, b=y+z c=z+x
Hence, the above inequality should be transformed to
8(x +y+2)3 > 216xyz
e (x+y+2)°3=27xyz
Sx+y+x=33xyz
This is true due to the AM-GM inequality of three non-negative numbers.
Return to the front part, where we need to prove
B > vt~
2) “271p-a)(p—-b)p—c) 27
p a+b+c _R(sinA+sinB+sinC)
33 63 3v3
3v3

< sind +sinB +sinC ST

=

R
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This is also true in any triangle ABC thanks to the proof of using Jensen’s inequality to
concave functions. However, here | represent an amazing way to prove this, which was
recommended by teacher Tran Phuong. Recall

T =sinA+sinB +sinC

=sinA + sin B + sin(4 + B)

=sinA +sinB + sinA cos B + sin B cos 4
2 <§sinA + ?sinB) + %(@COSA sin B + V3 cos BsinA)

V3

Using AM-GM inequality from the geometric mean side, we get

T < % E + (sinA)? + % + (sin B)Z]
L 2 ; 2 2 i 2 —ig
+2\/§[3(COSA) + (sinB)“ + 3(cos B)* + (sinA)*] = 5

Both parts of inequality (II) are proven, QED. Equalities hold whena=b =c. =
In Section 5, I would demonstrate more about Tran Phuong’s recommendation.

4. A. Szoros’ Inequality I11

Problem: Given triangle ABC, prove that

4R>b+c>8r I
a_lc lb_a ( )

4.1.About angle bisectors of a triangle

?

Figure 2. Angle bisector AD and incenter | of triangle ABC



Lemma I. (where [, is the length of AD)

2bc cos é
l,=— 2
b+c
Proof. According to the angle bisector’s property
BD CD BD+CD BC a
AB AC AB+ AC _ALZ+AC_b+c
a

a
= BD=—; CD =
b+c b+c

Using the law of cosine in triangles ABD and ACD:
{BD2 = AB? + AD? — 2AB.AD cos BAD

CD? = AC? + AD? — 2AC.AD cos CAD
2

((_ac 2.2 é
( ) =c*+1; 2(:lacos2

b+c
ab \* A
(b+c) = b+12 — 2bl cos
a*(c*-b* A
W—C —b —Z(C—b)laCOSE
2

A
= b+c=b+c—21acos§

(we might assume that b # c)
a? 3 b? + c? — a? + 2bc _ 2bccos A+ 2bc

b+c b+c b+c
2

A
= Zlacosi=b+c—

A
_ 2bc(1+cosA) 4bc (COS 7)

b+c b+c
2bccosé

>, =—2*

a b+c

If b = c, triangle ABC becomes isosceles at vertex A, where [, = h,, and the Lemma is
clearly true since
A , A
2bc cosy 2b cos = A

brc ~ 2p  Peosy=ha

QED. e

Lemma Il. (where [, is the length of AD)
2

lo =372V bep(p — a)
Proof. In Figure 2, | solve for AD in triangle ABD, of which AB, BD, and cos B are given.

AD? = AB? + BD? — 2AB.BD cos ABD

= =t () 2 (2 ( te o bz)




. ac Z_C(cz+a2—b2)

la=c +(b+c) b+c
1

_ 2.2 4 .2 2 _ 24 .2 _ p2

—(b+c)2[ac +c(b+c) —c(b+c)(c*+a*—b?)]
1

— 2.2 2 _ A2 _ 42 2

—(b+c)2[ac +c(b+ c)(bc+ c* —c* —a* + b*)]
1

— 2.2 2 _ 42 2

—(b+c)2[ac + (bc + ¢*)(bc — a* + b?)]

_ 2.2 2,2 _ 2 3 3_ 2,2 )

—(b+c)2(ac + b%c* —a*bc + b°c + bc® — a*c* + b*c*)

_ 3 2.2 3_ 2

_(b+c)2(b ¢+ 2b“c* + bc® — a“bc)

_ be(b? + 2bc + ¢? — a?)

- (b +¢)?

_ bc[(b +¢)? — a?]

- (b + ¢)?

_bc(b+c+a)b+c—a)

B (b + c)?

__4bcp(p — a)

(b +c)?

2
= lg =7——+bep(p—a)

b+c
QED. e

From the above lemmas, we could obtain

2 bc
And in Figure 2, using the law of sine in triangle ABD, we get
BD _ AD
sin % sin B
And therefore
ac \ b
. A BDsinB (b_-l-c) 7R abc S
SIin— = = = =
2
2 AD b—-l-c‘/bCp(p —a) 4R\/bCP(P —a) \/bCP(P —a)
_ |[(e=b)(p—c)
B bc

These formulas allow us to find trigonometric functions of g with three sides given.

Furthermore, [ would represent one direct way to find any triangle’s incenter in plane Oxy.



Property: Given triangle ABC with incenter I, then
alA + bIB +cIC =0

Proof: In Figure 2, BI is the angle bisector of ABC. Consider triangle ABD:

ID IA 14 AB D c D b + CID
—_—— = — = =

BD AB BD ac a
b+c

= ald = —(b + c)ID

And note that

DB DC N .
—=—= bDB = —cDC
c b

Hence
alA + bIB + cIC
= —(b + ¢)ID + bIB + cIC
— b(IB — D) + <(I€ — D)
= bDB + cDC
=0

QED. o

4.2.Solution for A. Szoros’ Inequality IT1
Rewrite (111):

4R> b N C >8r
a _-Zabcos% 2accos§-_ a
a+b a+c
a+b a+c
< 4R > > 8r

2 Cos 2 cos~
2R(sinA + sinB) N 2R(sinA + sin C) -

< 4R > C B > 8r
2c057 2c057
. A+ B A—B A+ C A—-C
2 sin 5 C0S— 2 sin 5 C0S— 8r
=4z WEY: + “A+C =
sin—;, sin—

3> A—B+ A—C>4r
@ —
= cos— cos—— =4

The front part is obviously true since cos 8 < 1, V6 € R, so equality holds only when
A=B=C==.

However, to prove the back part of this double-inequality, I am supposed to return to
initial steps, with help from Lemma 11. Rewrite the back part of (111):



b(a+ b) c(a+c) >85
2.Jabp(p —¢) 2Jacp(p —b) Ppa
(a+b)Vab (a+ c)Vac
<=> + >8/p-p-bDp-0 *
2\p—c 2\Jp—>b
Using AM-GM inequality, of which
a+b=2Vab; a+c=>2ac
b c 2avbc

>

a N a
Jp—=c Jp—b Yp-b)(p-o)

LHS(x) >

So it is enough to show that
avbe 2 4/(p—a)(p - b)(p - )V -b)p —©)
e a’bcz16(p—a)p-b)P -V -b)p—c) (%)

Indeed, from geometric mean side to arithmetic mean side:
2J@-b)p—c)<p-b+p-c=a
2J—-b)p—c)<a
2Jo-c)(p—a)<b

2J(p-a)p-b)<c
= RHS(*x) < LHS(*%)
Equality holds whena = b = c. QED. m

5. More discussions
5.1.The relation between circumscribed radius and inradius of a triangle

From A. Szoros’ Inequalities II and 11, we obtain R > 2r. This is also consequently
resulted in from many triangle-trigonometric problems, and | would represent one
direct way of proving this:

>2r & >— & abc > p—a)(p p—c

This is due to a result in last subsection, where
2Jp-bD)p-c)<a
2/p-o)p-a)<b
2Jp-a)p-b) <c

And the back part of (/1) leads to a nice problem:

A—B+ A-C
> cos—

- 4r
cos > —
R

Or generally



A—B+ B—C+ C—A_ or
> cos— cos—— =24

CoS
5.2.Proving basic triangle-trigonometric inequalities
In triangle ABC
. _ _ 3v3
T =sinA+sinB +sinC < > (iv)

3
U =cosA+cosB +cosC SE (v)

A B C 3 .
V=smE+smE+smES§ (vi)

A B .
W_COSE+COSE+COSE_T (vii)

Except (v), all (iv), (vi), and (vii) could be proven by using Jensen’s inequality to
concave functions. But | would represent a method proposed by Tran Phuong to prove
these inequalities, just like in subsection 4.2. Moreover, problem (v) could be proven
by using the SOS method, a highly convenient way.

Indeed:

1
RHS(v) — LHS(v) =1 —cosA — (cosB + cos C) +—

_2<,A)2 peos BT C o B=C ( ) 1(
= Slrl2 cos > CosS ) cos 2

)

_Ay? A  B- C 1
=2 (sm E) -2 smEcos > (cos > > (sm )
1, A 21
=§(251n5—cos ) E( > >0
QED. Equality holds when A B=C= g

Tran Phuong’s recommendation:
Proof of (v), assuming C = {(r)la%{A; B;C}:
;T

U=cosA+cosB+cosC =cosA+ cosB —cos(A+ B)
= 1(cos A + cos B) — cos Acos B + sin Asin B
Using AM-GM inequality:
1 1 3
U< 5[1 + (cos A + cos B)?] — cos Acos B + = [(smA)2 + (sinB)?] = 5
Proof of (vi):

Ve ain® it ain® b sin sl b sinf 1 cosATE
—SlIl2 Sln2 SlIlZ—SlIl2 Sln2 COS >
1(_A+_B)+ A B A B
Sll’l2 Sll’l2 COSZCOS2 511'12511’12

Using AM-GM inequality:
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V<11+('A+'B)2 _A.B+1< A>2+( B)Z 3
<5 sin= + sin 5 sinsin— + | ( cos cos—) =3

Proof of (vii):

W cosd b cos Bt cosC = cos™t cos B a sinATE
—COS2 COS2 COSZ—COS2 COS2 Sin >

—cosd b cosB b cinPeos® 4 sin® cos

—COS2 COS2 SIHZCOS2 SanCOS2

ﬁ 7COSE+7COSE

Using AM-GM inequality:

w3 (cosy) 43+ (cosgﬂ
\/_[ sm + (cos g)z +3 (sin §>2 + (cos g)zl = %g

QED. To all of these problems, equallties hold when triangle ABC is equilateral. ®

2 (V3 A V3 B 1 A B B A
< )+ﬁ<\/§sinicosi+\/§sin§cos§>

5.3.About A. Szoros’ Inequality 1

| A_j(p—b)(p—c)
S1 =

2 bc
Using this formula, then (1) becomes
abc I
p—a)@a+b)(a+c) bc

& abcVbe = (p—a)(a+b)(a+c)J(p—b)(p—c) (wiii)
Like |1 mentioned above:

2J(p-)p-a)<b
2J/p-a)p-b)<c
= bcz4(p -V -bp -0
So it would be enough were it possible to show that
avhe > (a+b)4(a+c)
However, this is totally not true, since
a+b=2Vab; a+c>2ac

Therefore, problem (viii) could be an unpleasant challenge in any contest.

6. Conclusion
Solving Alexandru Szoros’ Inequalities about triangle and trigonometric factors brought
me three lessons. First, transform expressions from complicated to simple forms. Second,
try to find common factors of both sides. And final, basic methods with classical
inequalities should be approached initially, there must be a key to clinch the problems.
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