

COMMENTED PROBLEM

DANIEL SITARU

ABSTRACT. In this article it is solved and commented a problem published in GMB 5/2016 with three distinct lines of solving belongs to 9; 10; 12 - standard classes

In GM5/2016 was published the following problem:
 „Le a, b, c be real and strictly positive numbers such that $a + b + c = 2 \leq abc$.
 Prove that $abc \geq 8$.“ (Author Daniel Sitaru)

Proof. Although published for the 9th grade problems - it can be given an elementary proof, that don't require knowledge above the 7th grade. We start from hypothesis:

$$\begin{aligned}
 & (a + b + c) + 2 \leq abc \\
 & 2(a + b + c) + 2 \leq abc + (a + b + c) \\
 & 2(a + b + c) + 3 \leq abc + (a + b + c) + 1 \\
 & (ab + bc + ca) + 2(a + b + c) + 3 \leq abc + (ab + bc + ca) + (a + b + c) + 1 \\
 & (a + 1)(b + 1) + (b + 1)(c + 1) + (c + 1)(a + 1) \leq (a + 1)(b + 1)(c + 1) \\
 (0.1) \quad & \frac{1}{c + 1} + \frac{1}{a + 1} + \frac{1}{b + 1} \leq 1
 \end{aligned}$$

Reducing the hypothesis to this inequality suggest using the following substitutions:

$$\begin{aligned}
 x &= \frac{1}{a + 1}; y = \frac{1}{b + 1}; z = \frac{1}{c + 1} \text{ de unde:} \\
 a &= \frac{1 - x}{x}; b = \frac{1 - y}{y}; c = \frac{1 - z}{z}
 \end{aligned}$$

Processed hypothesis 0.1 becomes:

$$x + y + z \leq 1 \text{ or } 1 - x \geq y + z; 1 - y \geq x + z; 1 - z \geq x + y.$$

In this conditions:

$$\begin{aligned}
 abc &= \frac{1 - x}{x} \cdot \frac{1 - y}{y} \cdot \frac{1 - z}{z} \geq \frac{(y + z)(z + x)(x + y)}{xyz} \geq \overbrace{\geq}^{\text{AM-GM}} \\
 &\geq \frac{2\sqrt{yz} \cdot 2\sqrt{zx} \cdot 2\sqrt{xy}}{xyz} = \frac{8xyz}{x + yz} = 8
 \end{aligned}$$

A solution for the 10th level grade, where we use the means inequality belongs to Marian Cucoaneş

$$\begin{aligned}
 abc &\geq 2 + a + b + c \geq 4\sqrt[4]{2abc} \\
 (abc)^3 &\geq 4^4 \cdot 2 = 2^9 \Rightarrow abc \geq 8
 \end{aligned}$$

Key words and phrases. substitutions, inequalities, Viète.

A solution for the 12th level grade, belonging to Leonard Giugiuc uses Viète relationships. Denoting: $a + b + c = 3s$ and $abc = p$, from means inequality we obtain $p \leq s^3 \Rightarrow 3s + 2 \leq s^3 \Rightarrow (s-2)(s+1)^2 \geq 0 \Rightarrow s \geq 2$.

From hypothesis $3s + 2 \leq p$ wherefrom:

$$8 = 3 \cdot 2 + 2 \leq 3s + 2 \leq p \Rightarrow p \geq 8 \Rightarrow abc \geq 8$$

The condition $a+b+c+2 \leq abc$ implies (like the author's solution) the relationship:

$$\frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c} \leq 1$$

observed indian mathematician Abhay Chandra. Following this idea, by applying means inequality he obtains:

$$\begin{aligned} \frac{2}{\sqrt{(a+1)(b+1)}} &\leq \frac{1}{1+a} + \frac{1}{1+b} \leq 1 - \frac{1}{1+c} = \frac{c}{c+1} \\ \frac{2}{\sqrt{(b+1)(c+1)}} &\leq \frac{1}{1+b} + \frac{1}{1+c} \leq 1 - \frac{1}{1+a} \leq \frac{a}{a+1} \\ \frac{2}{\sqrt{(c+1)(a+1)}} &\leq \frac{1}{1+c} + \frac{1}{1+a} \leq 1 - \frac{1}{1+b} \leq \frac{b}{b+1} \end{aligned}$$

By multiplying this relationships we obtain:

$$\frac{8}{(a+1)(b+1)(c+1)} \leq \frac{abc}{(a+1)(b+1)(c+1)}$$

wherefrom: $abc \geq 8$.

The methods indicated may be helpful in solving many problems of this type. \square

REFERENCES

- [1] *Mathematical Gazzette Colection*, A and B Series
- [2] *Didactica Matematica*
- [3] Daniel Sitaru, *Math Phenomenon*. Paralela 45 Publishing House, Pitesti, Romania, 2016.
- [4] Daniel Sitaru, Radu Gologan, Leonard Giugiuc *300 Romanian Mathematical Challenges*. Paralela 45 Publishing House, Pitesti, Romania, 2016.

MATHEMATICS DEPARTMENT, COLEGIUL NATIONAL ECONOMIC THEODOR COSTESCU, DROBETA TURNU - SEVERIN, MEHEDINTI, ROMANIA
E-mail address: dansitaru63@yahoo.com