ABOUT CALCULUS OF LIMITS FOR FAMOUS SEQUENCES

D. M. BATINETU - GIURGIU, DANIEL SITARU, NECULAI STANCIU

Problem 579 proposed by the great mathematician Traian Lalescu in ”Gazeta
Matematica” vol. VI (1900-1901) at page 148 requires to compute:

lim L, = lim ("*xl/(n—&-l). - W)n )
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and in vol. VII (1901-1902) at page 159 is proved that lim, ,cc L, = l.
Problem 2042 proposed by Romeo T. Ianculescu in vol. XIX (1913- 1914) at page
160 requires to compute:

lim 1, = lim ((n—i—l) "Wn+1l-—nin)n>2
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and in vol. XIX (1913-1914) at page 457 is proven that lim, o I, = 1.
In 1989 in GMB/4 at page 139 D. M. Batinetu Giurgiu propose the problem C:890
with the following enunciation'

_ _(n41)?
If B, = n+m \F’ n > 2 compute lim,, .., B,.

Celebrating 115 years since the publication of Lalescu’s problem and 103 years
since the publication of Tanculescu’s problem, we take great pleasure to recall the
contribution of some valuable collaborators of Mathematical Gazette or of some
prestigious journals from abroad. They published extensions and valuable general-
isations. We mention:

D. M. Batinetu Giurgiu, Maria Bétinetu Giurgiu, Marcel Tena, Mihaly Bencze,
Marius Somodi, Nicolae Musuroia, Ovidiu Pop, Neculai Stanciu, Nicusor Zlota,
Ténase Negoi, Traian Ianculescu, Kee-Wai Lau (Hong Kong), Michel Bataille (France),
Anastasios Kotronis (Greece), Moti Levy (Israel), Paolo Perfetti (Italy), Omran
Kouba (Siria), Angel Plaza (Spain), P. P. Dalyai (Hungary), Arkady Alt (USA).
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For a, =nl;yn € N*;s = 0,7 = 1,a = 1 and we obtain Batinetu Giurgiu’s sequence’s
limit
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For r = 0;a, = n;b, =n;n > 2 it follows a = b =1 and so:
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namely Tanculescu’s sequence.
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